chap大地测量坐标系统的转换实用.pptx

上传人:莉*** 文档编号:87141522 上传时间:2023-04-16 格式:PPTX 页数:96 大小:995.74KB
返回 下载 相关 举报
chap大地测量坐标系统的转换实用.pptx_第1页
第1页 / 共96页
chap大地测量坐标系统的转换实用.pptx_第2页
第2页 / 共96页
点击查看更多>>
资源描述

《chap大地测量坐标系统的转换实用.pptx》由会员分享,可在线阅读,更多相关《chap大地测量坐标系统的转换实用.pptx(96页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第七章 大地测量坐标系统的转换第一节第一节 我国的大地坐标系统简介我国的大地坐标系统简介第二节第二节 大地坐标与三维直角坐标的换算关系(重大地坐标与三维直角坐标的换算关系(重点)点)第三节第三节 不同大地坐标系统之间的转换(重点)不同大地坐标系统之间的转换(重点)第四节第四节 平面坐标系统之间的转换(重点)平面坐标系统之间的转换(重点)第五节第五节 局部坐标系统的选择与坐标转换(重点)局部坐标系统的选择与坐标转换(重点)第六节第六节 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第七节第七节 GPSGPS高程与局部地区大地水准面精化问题高程与局部地区大地水准面精化问题第1页/共96页

2、第一节第一节 我国的大地坐标系统简介我国的大地坐标系统简介 应用大地测量学应用大地测量学u 1954 1954年北京坐标系年北京坐标系u 19801980年国家大地坐标系年国家大地坐标系u 19541954年北京坐标系(整体平差转换值)年北京坐标系(整体平差转换值)-所谓所谓”新新5454坐标系坐标系”第2页/共96页 应用大地测量学应用大地测量学7.1.1 1954年北京坐标系年北京坐标系7.1.2 1980年国家大地坐标系年国家大地坐标系7.1.3 1954年北京坐标系(整体平差转换值)年北京坐标系(整体平差转换值)7.1 我国的大地坐标系统简介我国的大地坐标系统简介第3页/共96页 应用

3、大地测量学应用大地测量学7.1.1 1954年北京坐标系年北京坐标系7.1.2 1980年国家大地坐标系年国家大地坐标系7.1.3 1954年北京坐标系(整体平差转换值)年北京坐标系(整体平差转换值)7.1 我国的大地坐标系统简介我国的大地坐标系统简介第4页/共96页7.1.1 1954年北京坐标系年北京坐标系 应用大地测量学应用大地测量学 1954年,总参测绘局在有关方面的建议与支持下,鉴于当时的历史条件,采取先将我国一等锁与前苏联远东一等锁相联接,然后以连接处呼玛,吉拉林,东宁基线网扩大边端点的前苏联1942年普尔科沃坐标系的坐标为起算数据,平差我国东北及东部一等锁,这样从苏联传算来的坐标

4、系定名为1954年北京坐标系。1954年北京坐标系实际上是前苏联1942年普尔科沃坐标系在我国的延伸,但我国坐标系的大地点高程(1956年黄海高程系)却与前苏联坐标系的计算基准面不同,因此严格意义上来说,二者不是完全相同的大地坐标系。第5页/共96页 应用大地测量学应用大地测量学特点特点:u1954年北京坐标系属于参心坐标系;u采用克拉索夫斯基椭球参数;u多点定位:垂线偏差由900个点解得,大地水准面差距由43个点解得;u参考椭球定向时令 ;u大地原点是前苏联的普尔科沃;u大地点高程是以1956年青岛验潮站求出的黄海平均海水面为基准;u高程异常是以前苏联1955年大地水准面重新平差结果为起算值

5、,按我国天文水准路线推算出来的;u提供的大地点成果是局部平差结果。7.1.1 1954年北京坐标系年北京坐标系第6页/共96页 应用大地测量学应用大地测量学问题和缺点:问题和缺点:u克拉索夫斯基椭球比现代精确椭球相差过大;u只涉及两个几何性质的椭球参数(a和),满足不了当今理论研究和实际工作中所需四个地球椭球基本参数的要求;u处理重力数据时采用的是赫尔默特1901到1909年正常重力公式,与之相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的;u对应的参考椭球面与我国大地水准面存在着自西向东明显的系统性倾斜,在东部地区高程异常最大达到65米,全国范围平均29米;u椭球定向不明确,椭

6、球短轴指向既不是CIO,也不是我国的JYD1968.0;u起始子午面不是国际时间局BIH所定义的格林尼治平均天文台子午面,给坐标换算带来一些不便和误差;u坐标系未经整体平差而仅是局部平差成果,点位精度不高,也不均匀;u名不副实,容易引起一些误解。7.1.1 1954年北京坐标系年北京坐标系第7页/共96页 应用大地测量学应用大地测量学19541954年北京坐标系中国大陆大地水准面起伏年北京坐标系中国大陆大地水准面起伏7.1.1 1954年北京坐标系年北京坐标系第8页/共96页 应用大地测量学应用大地测量学7.1.1 1954年北京坐标系年北京坐标系7.1.2 1980年国家大地坐标系年国家大地

7、坐标系7.1.3 1954年北京坐标系(整体平差转换值)年北京坐标系(整体平差转换值)7.1 我国的大地坐标系统简介我国的大地坐标系统简介第9页/共96页7.1.2 1980年国家大地坐标系年国家大地坐标系 应用大地测量学应用大地测量学特点:特点:u1980年国家大地坐标系属参心大地坐标系;u采用既含几何参数又含物理参数的四个椭球基本参数。数值采用1975年IUGG第16届大会的推荐值;u多点定位;u定向明确。地球椭球短轴平行于由地球质心指向地极原点JYD1968.0方向,起始大地子午面平行于我国起始天文子午面;u大地原点在我国中部:陕西省泾阳县永乐镇,简称西安原点;u大地点高程以1956年青

8、岛验潮站求出的黄海平均海水面为基准;u1980年国家大地坐标系建立后,进行了全国天文大地网整体平差,计算了5万余个点的成果。第10页/共96页 应用大地测量学应用大地测量学19801980年国家大地坐标系中国大陆大地水准面起伏年国家大地坐标系中国大陆大地水准面起伏7.1.2 1980年国家大地坐标系年国家大地坐标系第11页/共96页7.1.2 1980年国家大地坐标系年国家大地坐标系 应用大地测量学应用大地测量学新问题:新问题:u原来的各种关于椭球参数的用表均要变更u低等点要重新平差,编撰新的三角点成果表u地形图图廓线和方里网线位置发生变化,并引起地形图内地形、地物相关位置的改变u新形势下19

9、80年国家大地坐标系的地极原点JYD1968.0已不能适应当代建立高精度天文地球动力学系带要求。第12页/共96页 应用大地测量学应用大地测量学7.1.1 1954年北京坐标系年北京坐标系7.1.2 1980年国家大地坐标系年国家大地坐标系7.1.3 1954年北京坐标系(整体平差转换值)年北京坐标系(整体平差转换值)7.1 我国的大地坐标系统简介我国的大地坐标系统简介第13页/共96页7.1.3 1954年北京坐标系(整体平差转换值年北京坐标系(整体平差转换值)应用大地测量学应用大地测量学 它是在1980年国家大地坐标系的基础上,改变IUGG1975年椭球至克拉索夫斯基椭球,通过在空间三个坐

10、标轴上进行平移而来的。因此,其坐标值仍体现了整体平差的特点,精度和1980年国家大地坐标系相同,克服了1954年北京坐标系局部平差的缺点;其坐标轴和1980年国家大地坐标系坐标轴相互平行,所以它的定向明确;它的椭球参数恢复为1954年北京坐标系的椭球参数,从而使其坐标值和1954年北京坐标系局部平差坐标值相差较小。第14页/共96页 应用大地测量学应用大地测量学特点:特点:u属参心大地坐标系;长短轴采用克拉索夫斯基椭球参数;u多点定位,参心虽和1954年北京坐标系参心不相一致,但十分接近;u定向明确,与1980年国家大地坐标系的定向相同;u大地原点与1980年国家大地坐标系相同,但大地起算数据

11、不同;u大地点高程基准是以1956年青岛验潮站求出的黄海平均海水面为基准;u提供坐标是1980年国家大地坐标系整体平差转换值,精度一致;u用于测图坐标系,对于1:5万以下比例尺测图,新旧图接边,不会产生明显裂痕。7.1.3 1954年北京坐标系(整体平差转换值年北京坐标系(整体平差转换值)第15页/共96页 应用大地测量学应用大地测量学三个坐标系的关系如下图:7.1.3 1954年北京坐标系(整体平差转换值年北京坐标系(整体平差转换值)第16页/共96页第七章 大地测量坐标系统的转换第一节第一节 我国的大地坐标系统简介我国的大地坐标系统简介第二节第二节 大地坐标与三维直角坐标的换算关系(重大地

12、坐标与三维直角坐标的换算关系(重点)点)第三节第三节 不同大地坐标系统之间的转换(重点)不同大地坐标系统之间的转换(重点)第四节第四节 平面坐标系统之间的转换(重点)平面坐标系统之间的转换(重点)第五节第五节 局部坐标系统的选择与坐标转换(重点)局部坐标系统的选择与坐标转换(重点)第六节第六节 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第七节第七节 GPSGPS高程与局部地区大地水准面精化问题高程与局部地区大地水准面精化问题第17页/共96页第二节第二节 大地坐标与三维直角坐标的换算关系大地坐标与三维直角坐标的换算关系 应用大地测量学应用大地测量学 空间大地直角坐标(X,Y,Z)

13、与空间大地坐标(B,L,H)是属于同一个坐标系统下的两种不同的坐标表示方式,它们之间存在着唯一的数学”换算“关系。第18页/共96页第二节第二节 大地坐标与三维直角坐标的换算关系大地坐标与三维直角坐标的换算关系 应用大地测量学应用大地测量学1、由(B,L,H)求(X,Y,Z)(7-1)、(2-4)第19页/共96页第二节第二节 大地坐标与三维直角坐标的换算关系大地坐标与三维直角坐标的换算关系 应用大地测量学应用大地测量学2、由(X,Y,Z)求(B,L,H)迭代公式:迭代公式:(7-27-2)求解大地纬度求解大地纬度B B需要迭代计算,初始值(需要迭代计算,初始值(7-37-3)第20页/共96

14、页第二节第二节 大地坐标与三维直角坐标的换算关系大地坐标与三维直角坐标的换算关系 应用大地测量学应用大地测量学2、由(X,Y,Z)求(B,L,H)不用迭代的计算公式:不用迭代的计算公式:例题:P212。第21页/共96页第七章 大地测量坐标系统的转换第一节第一节 我国的大地坐标系统简介我国的大地坐标系统简介第二节第二节 大地坐标与三维直角坐标的换算关系(重点)大地坐标与三维直角坐标的换算关系(重点)第三节第三节 不同大地坐标系统之间的转换(重点、难点)不同大地坐标系统之间的转换(重点、难点)第四节第四节 平面坐标系统之间的转换(重点)平面坐标系统之间的转换(重点)第五节第五节 局部坐标系统的选

15、择与坐标转换(重点、难点)局部坐标系统的选择与坐标转换(重点、难点)第六节第六节 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第七节第七节 GPSGPS高程与局部地区大地水准面精化问题高程与局部地区大地水准面精化问题第22页/共96页第三节第三节 不同大地坐标系统之间的转换不同大地坐标系统之间的转换 应用大地测量学应用大地测量学 对对于于不不同同的的参参数数椭椭球球,椭椭球球的的定定位位和和定定向向不不同同,相相应应的的大大地地坐坐标标系系统统是是不不同同的的。实实际际应应用用中,需要进行不同大地坐标系统之间的转换。中,需要进行不同大地坐标系统之间的转换。不不同同大大地地坐坐标标系

16、系统统之之间间的的转转换换分分为为不不同同空空间间直角坐标直角坐标的转换和的转换和不同大地坐标不同大地坐标的转换。的转换。第23页/共96页 应用大地测量学应用大地测量学7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换7.3.2 不同大地坐标系的转换不同大地坐标系的转换7.3.3 其他转换方法其他转换方法7.3 不同大地坐标系统之间的转换不同大地坐标系统之间的转换第24页/共96页 应用大地测量学应用大地测量学7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换7.3.2 不同大地坐标系的转换不同大地坐标系的转换7.3.3 其他转换方法其他转换方法7.3 不同大地坐标系统之

17、间的转换不同大地坐标系统之间的转换第25页/共96页7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换 应用大地测量学应用大地测量学(一)欧勒角(一)欧勒角 不同空间直角坐标系的转换,包括三个坐标轴的平移和坐标轴的旋转,以及两个坐标系的尺度比参数,坐标轴之间的三个旋转角叫欧勒角。第26页/共96页7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换 应用大地测量学应用大地测量学(一)欧勒角(一)欧勒角(1)OZ1轴不动,绕其将0X1、OY1旋转z角,旋转后的坐标轴OX1、OY1变为OX0、OY0;(2)绕OY0轴将0Z1、OX0旋转 y角,旋转后的坐标轴OZ1、OX0变为OZ

18、0、OX2;(3)绕OX2轴将0Z0、OY0旋转x角,旋转后的坐标轴OZ0、OY0变为OZ2、OY2;旋转变换公式:(7-6)、(7-7)、(7-8)若两套坐标系原点一致,坐标轴互不平行,其欧拉角为x、y、z,则将O-X1Y1Z1转换为O-X2Y2Z2的步骤为:第27页/共96页 应用大地测量学应用大地测量学 (二)三参数法(二)三参数法 三参数坐标转换公式是在假设两坐标系间各坐标轴相互平行,轴系间不存在欧勒角的条件下得出的。实际应用中,因为欧勒角不大,可以用三参数公式近似地进行空间直角坐标系统的转换。公共点只有一个时,采用三参数公式进行转换。(7-9)7.3.1 不同空间直角坐标系的转换不同

19、空间直角坐标系的转换第28页/共96页 应用大地测量学应用大地测量学 (三)七参数法(三)七参数法 用七参数进行空间直角坐标转换有布尔莎公式,莫洛琴斯基公式和范氏公式等。下面给出布尔莎七参数公式:(7-10)7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换 优点:转换结果精度较高。实际应用中舍弃不显著的参数,如个别欧拉角,选择四、五、六个参数进行转换。注意:剔除误差较大的公共点!第29页/共96页 应用大地测量学应用大地测量学 (三)七参数法(三)七参数法7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换四参数法:局部地区应用七参数法球的的转换参数,尤其是平移参数的精度不

20、高,公共点坐标小的变化会引起转换参数的交大变化。局部地区,选取测区内一公共点的坐标作为“原点”,分别求出各点对原点的坐标差值。利用公共点的坐标差值求解转换参数。(公式7-11)实际数据计算表明,这种方法的转换精度优于七参数法。第30页/共96页 应用大地测量学应用大地测量学 (四)坐标转换多项式回归模型(四)坐标转换多项式回归模型 坐标转换七参数公式属于相似变换模型。大地控制网中的系统误差一般呈区域性,当区域较小时,区域性的系统误差被相似变换参数拟合,故局部区域的坐标转换采用七参数公式模型是比较适宜的。但对全国或一个省区范围内的坐标转换,可以采用多项式回归模型,将各区域的系统偏差拟合到回归参数

21、中,从而提高坐标转换精度。两种不同空间直角坐标系转换时,坐标转换的精度取决于坐标转换的数学模型和求解转换系数的公共点坐标精度,此外,还与公共点的分布有关。鉴于地面控制网系统误差在不同区域并非是一个常数,所以采用分分区区进进行行坐坐标标转转换换能更好地反映实际情况,提高坐标转换的精度。7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换第31页/共96页 应用大地测量学应用大地测量学7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换7.3.2 不同大地坐标系的转换不同大地坐标系的转换7.3.3 其他转换方法其他转换方法7.3 不同大地坐标系统之间的转换不同大地坐标系统之间的转换

22、第32页/共96页7.3.2 不同大地坐标系的转换不同大地坐标系的转换 应用大地测量学应用大地测量学 不同大地坐标系的转换是指椭椭球球元元素素及及其其定定位位不不同同的两个大地坐标系统之间的坐标转换。空间一点P对于第一个参考椭球其大地坐标为(B1,L1,H1),当椭球元素及其定位变化后,P点的大地坐标变化了(dB,dL,dH),对于变化后的第二个参考椭球P点的大地坐标为(B2,L2,H2)。显然,不同大地坐标系的转换公式为 只要求出大地坐标的变化量,就可以按上式进行不同大地坐标系的转换。根据椭球元素和定位的变化推求点的大地经纬度和大地高的变化的公式,叫做大地坐标微分公式大地坐标微分公式。(一)

23、大地坐标微分公式(一)大地坐标微分公式 第33页/共96页 应用大地测量学应用大地测量学 由第二节空间直角坐标和大地坐标的关系式(7-1)可知,点的空间大地直角坐标是椭球几何元素(长半径a和扁率f)和椭球定位元素(B,L,H)的函数。当椭球元素和定位元素发生变化时,点的空间大地直角坐标必然发生变化。7.3.2 不同大地坐标系的转换不同大地坐标系的转换(一)大地坐标微分公式(一)大地坐标微分公式 第34页/共96页 应用大地测量学应用大地测量学(一)大地坐标微分公式(一)大地坐标微分公式:(7-16)(推导见P219-220)7.3.2 不同大地坐标系的转换不同大地坐标系的转换式中,da,df表

24、示椭球元素的变换;dX,dY,dZ表示椭球中心的变化,即椭球定位的变化。因此,上式就是优于椭球元素和定位变化引起的点的大地坐标变化的公式,叫大地坐标微分公式。第35页/共96页 应用大地测量学应用大地测量学(一)大地坐标微分公式(一)大地坐标微分公式 布尔莎形式的布尔莎形式的广义大地坐标微分公式广义大地坐标微分公式 :(:(7-177-17)7.3.2 不同大地坐标系的转换不同大地坐标系的转换9个参数第36页/共96页 应用大地测量学应用大地测量学(二)利用空间直角坐标作介质进行不同大地坐标系的转换流程(二)利用空间直角坐标作介质进行不同大地坐标系的转换流程广义大地坐标微分公式转换参数有9个,

25、与空间大地直角坐标七参数转换公式转换精度相当,但公式较为复杂。(X1,Y1,Z1)(B1,L1,H1)(X2,Y2,Z2)(B2,L2,H2)Brusa七参数公式椭球1参数椭球2参数7.3.2 不同大地坐标系的转换不同大地坐标系的转换第37页/共96页 应用大地测量学应用大地测量学 不同大地坐标系统之间的转换与空间直角坐标转换一样,也可以采用多项式回归模型进行坐标转换。如利用公式(7-12),将式中的X、Y、Z替换成相应的B、L、H即可。公式右边也可以只采用B和L两个变量,分别列出B、L、H的变化值与B、L的多项式关系式。7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换(三)多项式

26、法(三)多项式法 第38页/共96页 应用大地测量学应用大地测量学(四)不同二维大地坐标系的转换(四)不同二维大地坐标系的转换 只要在大地坐标微分公式中,将H=0代入即得到二维大地坐标转换模型:(7-18)7.3.2 不同大地坐标系的转换不同大地坐标系的转换第39页/共96页 应用大地测量学应用大地测量学7.3.1 不同空间直角坐标系的转换不同空间直角坐标系的转换7.3.2 不同大地坐标系的转换不同大地坐标系的转换7.3.3 其他转换方法其他转换方法7.3 不同大地坐标系统之间的转换不同大地坐标系统之间的转换第40页/共96页第七章 大地测量坐标系统的转换第一节第一节 我国的大地坐标系统简介我

27、国的大地坐标系统简介第二节第二节 大地坐标与三维直角坐标的换算关系(重大地坐标与三维直角坐标的换算关系(重点)点)第三节第三节 不同大地坐标系统之间的转换(重点)不同大地坐标系统之间的转换(重点)第四节第四节 平面坐标系统之间的转换(重点)平面坐标系统之间的转换(重点)第五节第五节 局部坐标系统的选择与坐标转换(重点)局部坐标系统的选择与坐标转换(重点)第六节第六节 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第七节第七节 GPSGPS高程与局部地区大地水准面精化问题高程与局部地区大地水准面精化问题第41页/共96页 应用大地测量学应用大地测量学7.4.1 不同二维高斯投影平面坐标

28、系的转换模型不同二维高斯投影平面坐标系的转换模型7.4.2 平面坐标系统相似变换模型平面坐标系统相似变换模型7.4 平面坐标系统之间的转换平面坐标系统之间的转换第42页/共96页 应用大地测量学应用大地测量学7.4.1 不同二维高斯投影平面坐标系的转换模型不同二维高斯投影平面坐标系的转换模型7.4.2 平面坐标系统相似变换模型平面坐标系统相似变换模型7.4 平面坐标系统之间的转换平面坐标系统之间的转换第43页/共96页7.4.1 不同二维高斯投影平面坐标不同二维高斯投影平面坐标系的转换模型系的转换模型 应用大地测量学应用大地测量学 不不同同大大地地坐坐标标系系统统转转换换的的另另一一思思路路:

29、将不同的大地坐标(B,L)用各自的椭球参数分别按高斯正形投影正算公式变换到高斯平面上,变为不同的二维高斯投影平面坐标(x,y)。此时,可以按二维高斯投影坐标变换模型进行坐标转换,再将转换后的高斯平面坐标按高斯投影反算公式变换为相应的大地坐标。第44页/共96页7.4.1 不同二维高斯投影平面坐标不同二维高斯投影平面坐标系的转换模型系的转换模型 应用大地测量学应用大地测量学将式(7-20)、(7-17)带入式(7-19)得到不同二维高斯平面坐标系的转换模型。(7-19)由(6-1)可得:第45页/共96页 应用大地测量学应用大地测量学7.4.1 不同二维高斯投影平面坐标系的转换模型不同二维高斯投

30、影平面坐标系的转换模型7.4.2 平面坐标系统相似变换模型平面坐标系统相似变换模型7.4 平面坐标系统之间的转换平面坐标系统之间的转换第46页/共96页7.4.2 平面坐标系统相似变换模型平面坐标系统相似变换模型 应用大地测量学应用大地测量学 称为坐标变换的平移参数,m称为尺度比参数,称为旋转角参数。优点:原有控制网几何形状及相对关系不变。缺点:公共点本身可能有误差,要剔除误差大的公共点。第47页/共96页第七章 大地测量坐标系统的转换第一节第一节 我国的大地坐标系统简介我国的大地坐标系统简介第二节第二节 大地坐标与三维直角坐标的换算关系(重点)大地坐标与三维直角坐标的换算关系(重点)第三节第

31、三节 不同大地坐标系统之间的转换(重点、难点)不同大地坐标系统之间的转换(重点、难点)第四节第四节 平面坐标系统之间的转换(重点)平面坐标系统之间的转换(重点)第五节第五节 局部坐标系统的选择与坐标转换(重点、难局部坐标系统的选择与坐标转换(重点、难点)点)第六节第六节 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第七节第七节 GPSGPS高程与局部地区大地水准面精化问题高程与局部地区大地水准面精化问题第48页/共96页第五节第五节 局部坐标系统的选择与坐标转换局部坐标系统的选择与坐标转换 应用大地测量学应用大地测量学 按高斯正形投影6分带或3分带所建立的高斯平面坐标系统通常称为国

32、家统一坐标系统。高斯投影会引起长度变形,投影带的边沿长度变形更大。工程测量采用国家统一坐标系统时,控制网实测边长应化算为高斯平面边长。测图时地面长度化算为高斯平面边长要加改正;另外地面点如果高出椭球面一定高度,则地面长度归算至椭球面上也要加改正。这样一来,给测图用图带来不便,有时需选择局部坐标系。第49页/共96页 应用大地测量学应用大地测量学7.5.1 长度变形及其容许值长度变形及其容许值7.5.2 国家统一坐标系引起的长度变形国家统一坐标系引起的长度变形7.5.3 工程测量坐标系的选择工程测量坐标系的选择7.5.4 选择独立坐标系应注意的事项选择独立坐标系应注意的事项7.5 局部坐标系统的

33、选择与坐标转换局部坐标系统的选择与坐标转换第50页/共96页 应用大地测量学应用大地测量学7.5.1 长度变形及其容许值长度变形及其容许值7.5.2 国家统一坐标系引起的长度变形国家统一坐标系引起的长度变形7.5.3 工程测量坐标系的选择工程测量坐标系的选择7.5.4 选择独立坐标系应注意的事项选择独立坐标系应注意的事项7.5 局部坐标系统的选择与坐标转换局部坐标系统的选择与坐标转换第51页/共96页7.5.1 长度变形及其容许值长度变形及其容许值 应用大地测量学应用大地测量学(一)地面水平长度归算至参考椭球面(一)地面水平长度归算至参考椭球面 地面水平长度归算至国家规定的椭球面上要加如下改正

34、:(7-24)(4-29)式中,RA为长度所在方向的椭球曲率半径,Hm为长度所在高程面对于椭球面的高差,s为实地测量的水平长度。例:Hm=1000m,s=10000m,s=-1.57m 第52页/共96页 应用大地测量学应用大地测量学(二)椭球面长度投影到高斯平面(二)椭球面长度投影到高斯平面 椭球面上的长度投影至高斯平面要加如下的改正:(7-25)(4-32)(6-67)式中,为长度两端点高斯平面坐标y坐标的平均值。S为椭球面边长。R为边长中点处椭球平均半径。例:=113km,S=10000m,S=+1.57m 7.5.1 长度变形及其容许值长度变形及其容许值第53页/共96页 应用大地测量

35、学应用大地测量学(三)地面水平长度归算至高斯投影平面的综合变形(三)地面水平长度归算至高斯投影平面的综合变形 (7-26)式中:各符号的含义同上,一定注意一定注意S S与与s s属于不同的边长属于不同的边长。7.5.1 长度变形及其容许值长度变形及其容许值第54页/共96页 应用大地测量学应用大地测量学(四)投影长度相对变形(四)投影长度相对变形 取S=s,R=RA=6371km,Y、H以km为单位,将长度综合变形公式写成相对变形的形式:(7-27)上式表明,采用国家统一坐标系统所产生的长度综合变形与该长度所在的投影带内的位置投影带内的位置和和平均高程平均高程有关。我国工程测量规范和城市测量规

36、范均对长度综合变形的容许值作出了明确规定,选择独立坐标系时,应保证长度综合变形不超过2.5cm/km2.5cm/km(相对变形为(相对变形为1 1:4000040000)的这一原则。7.5.1 长度变形及其容许值长度变形及其容许值第55页/共96页 应用大地测量学应用大地测量学7.5.1 长度变形及其容许值长度变形及其容许值7.5.2 国家统一坐标系引起的长度变形国家统一坐标系引起的长度变形7.5.3 工程测量坐标系的选择工程测量坐标系的选择7.5.4 选择独立坐标系应注意的事项选择独立坐标系应注意的事项7.5 局部坐标系统的选择与坐标转换局部坐标系统的选择与坐标转换第56页/共96页7.5.

37、2 国家统一坐标系引起的长度变形国家统一坐标系引起的长度变形 应用大地测量学应用大地测量学 将长度综合变形的容许值1:4万代入相对变形公式,得 以H为纵坐标轴,y为横坐标轴绘右图第57页/共96页 应用大地测量学应用大地测量学图图7-77-7说明说明 所谓适用区,即如果地面长度平均高程和平均横坐标值位于该区域,则长度综合变形小于1:4万。例如1、2测区,测区中地面点的高程H和横坐标Y都满足测区所限定的范围,则不必选择独立坐标系。而3、4、5测区位于不适用区,其长度综合变形大于1:4万,为测图方便,可以选择独立坐标系,有以下三种选择方法:u选择H值,保证长度综合变形小于1:4万,“3测区”可以考

38、虑这种选择;u选择y值,保证长度综合变形小于1:4万,“4测区”可以考虑这种选择;u同时选择H和y值,保证长度综合变形小于1:4万,“5测区”可以考虑这种选择。7.5.2 国家统一坐标系引起的长度变形国家统一坐标系引起的长度变形第58页/共96页 应用大地测量学应用大地测量学7.5.1 长度变形及其容许值长度变形及其容许值7.5.2 国家统一坐标系引起的长度变形国家统一坐标系引起的长度变形7.5.3 工程测量坐标系的选择工程测量坐标系的选择7.5.4 选择独立坐标系应注意的事项选择独立坐标系应注意的事项7.5 局部坐标系统的选择与坐标转换局部坐标系统的选择与坐标转换第59页/共96页7.5.3

39、 工程测量坐标系的选择工程测量坐标系的选择 应用大地测量学应用大地测量学(一)选择(一)选择“抵偿高程面抵偿高程面”作为投影面,按高斯正形投影作为投影面,按高斯正形投影3 3度带计算度带计算平面直角坐标平面直角坐标 如果地面高出椭球面,地面长度归算到椭球面与从椭球面投影到高斯平面,所加的两项长度改正有互相抵偿的性质。设想,改变椭球的半径,则地面点的高程随之改变。如果高程H值改变到满足长度综合变形为0,即:则:H为改变椭球面后,地面点至新选椭球面(抵偿高程面)的高程。若y以百公里为单位,H以米为单位,则 (7-29)第60页/共96页 应用大地测量学应用大地测量学(一)选择“抵偿高程面”作为投影

40、面,按高斯正形投影3度带计算平面直角坐标 设地面点平均高程为Hm,抵偿高程面至原椭球面的高程H抵抵为:H抵=Hm-H (7-30)(H=Hm H抵)例一:地面点横坐标y0km,地面点平均高程Hm=400m,由(7-29)计算H=0m,则H抵=400m。则所选抵偿高程面(新的椭球面)为地面平均高程面。例二:地面点横坐标y=91km,地面点平均高程Hm=400m,由(7-29)计算H=650m,则H抵=-250m。7.5.3 工程测量坐标系的选择工程测量坐标系的选择第61页/共96页 应用大地测量学应用大地测量学(一)选择“抵偿高程面”作为投影面,按高斯正形投影3度带计算平面直角坐标 抵偿高程面确

41、定后,地面点在独立坐标系中的坐标(XD、YD)与国家统一坐标系坐标(X、Y)之间的关系按如下方法计算:选择其中一个国家大地点作为“原点”,保持它的国家统一坐标(x0,y0)不变,将其它大地点坐标(x,y)换算到抵偿高程面相应的坐标系中。公式如右所示:(7-31)7.5.3 工程测量坐标系的选择工程测量坐标系的选择第62页/共96页 应用大地测量学应用大地测量学(二)保持国家统一的椭球面作投影面不变,选择“任意投影带”,按高斯投影计算平面直角坐标 此项选择为保持高程不变,改变高斯投影的中央子午线,地面点的y值改变,使之满足 即:长度综合变形为零的条件。地面点在独立坐标系中的坐标(XD、YD)与国

42、家统一坐标系坐标(X、Y)之间的关系按坐标换带坐标换带方法计算。7.5.3 工程测量坐标系的选择工程测量坐标系的选择第63页/共96页 应用大地测量学应用大地测量学(三)选择平均高程面作投影面,通过测区中心的子午线作为中央子午线,按高斯投影计算平面直角坐标 此类情况方法为:既选择投影面,又选择投影带。选择后,保证测区中心处y0,H0,此时,长度综合变形为最小。例四:在国家统一坐标系中,地面点横坐标y=63km,地面点平均高程Hm=800m,如何选取工程测量独立坐标系?(1)按相对变形公式计算的综合投影变形为1/828。(2)选择独立坐标系时,首先选择过测区中心的经度为投影带的中央子午线经度L0

43、,此时,在新选择的投影带中,测区地面点的横坐标Y0;(3)再按例一的方法选择过测区平均高程面为新的椭球面,即H抵=800m。地面点在独立坐标系中的坐标(XD、YD)与国家统一坐标系坐标(X、Y)之间的关系按如下方法计算:(1)换带计算。(2)按(7-31)方法计算选定坐标系的坐标值。7.5.3 工程测量坐标系的选择工程测量坐标系的选择第64页/共96页 应用大地测量学应用大地测量学7.5.1 长度变形及其容许值长度变形及其容许值7.5.2 国家统一坐标系引起的长度变形国家统一坐标系引起的长度变形7.5.3 工程测量坐标系的选择工程测量坐标系的选择7.5.4 选择独立坐标系应注意的事项选择独立坐

44、标系应注意的事项7.5 局部坐标系统的选择与坐标转换局部坐标系统的选择与坐标转换第65页/共96页 应用大地测量学应用大地测量学(1)矿井深度较大的矿区,井下测度长度应加以改正。(2)对各等级控制测量,其长度应进行改正。(3)独立坐标系测绘的地形图,不能与国家坐标系测绘的地形图接边。(4)大面积的基础测绘不能采用独立坐标系。7.5.4 选择独立坐标系应注意的事项选择独立坐标系应注意的事项第66页/共96页第七章 大地测量坐标系统的转换第一节第一节 我国的大地坐标系统简介我国的大地坐标系统简介第二节第二节 大地坐标与三维直角坐标的换算关系(重大地坐标与三维直角坐标的换算关系(重点)点)第三节第三

45、节 不同大地坐标系统之间的转换(重点)不同大地坐标系统之间的转换(重点)第四节第四节 平面坐标系统之间的转换(重点)平面坐标系统之间的转换(重点)第五节第五节 局部坐标系统的选择与坐标转换(重点)局部坐标系统的选择与坐标转换(重点)第六节第六节 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第七节第七节 GPSGPS高程与局部地区大地水准面精化问题高程与局部地区大地水准面精化问题第67页/共96页 应用大地测量学应用大地测量学7.6.1 历元平天球坐标系与瞬时极(真)天球坐历元平天球坐标系与瞬时极(真)天球坐标系标系7.6.2 瞬时极(真)地球坐标系与平地球坐标系瞬时极(真)地球坐标

46、系与平地球坐标系7.6.3 瞬时极(真)天球坐标系与瞬时极(真)瞬时极(真)天球坐标系与瞬时极(真)地球坐标系地球坐标系7.6天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第68页/共96页 应用大地测量学应用大地测量学7.6.1 历元平天球坐标系与瞬时极(真)天球坐历元平天球坐标系与瞬时极(真)天球坐标系标系7.6.2 瞬时极(真)地球坐标系与平地球坐标系瞬时极(真)地球坐标系与平地球坐标系7.6.3 瞬时极(真)天球坐标系与瞬时极(真)瞬时极(真)天球坐标系与瞬时极(真)地球坐标系地球坐标系7.6 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第69页/共96页7.6.

47、1 历元平天球坐标系与瞬时极历元平天球坐标系与瞬时极(真)天球坐标系(真)天球坐标系 应用大地测量学应用大地测量学 地球在日、月和其他天体引力的作用下,在绕太阳运行时,其自转轴方向并不保持恒定。地球自转轴的变化,意味着天球南北极的运动,即北天极绕北黄极(过天球中心垂直与黄道平面的直线和天球表面的交点)作缓慢的旋转运动。天文学中把天极的运动分解为长周期运动长周期运动岁差岁差和短周期运动和短周期运动章动章动。天极位置的变化使天极有瞬时极(真)天极和平天极之分。相应的天球赤道也有真与平之分。天极的变化必然导致天球赤道面的变化,实际反映出春分点位置的变化。这样,以天球赤道面和春分点定义的天球坐标系便有

48、了瞬时极(真)天球坐标系与历元平天球坐标系。第70页/共96页7.6.1 历元平天球坐标系与瞬时极历元平天球坐标系与瞬时极(真)天球坐标系(真)天球坐标系 应用大地测量学应用大地测量学 (一)瞬时极(真)天球坐标系原点:地球质心。Z轴:瞬时北天极。X轴:真春分点。Y轴:与X轴、Z轴构成右手系。特点:坐标轴指向不断变化。不便于研究卫星的运动。第71页/共96页7.6.1 历元平天球坐标系与瞬时极历元平天球坐标系与瞬时极(真)天球坐标系(真)天球坐标系 应用大地测量学应用大地测量学 (二)历元平天球坐标系原点:地球质心。Z轴、X轴:选择某一历元时刻的瞬时地球旋转轴和春分点方向分别扣除此瞬间章动值。

49、Y轴:与X轴、Z轴构成右手系。特点:三轴指向不变。例子:选择2000年1月1.5日为历元时刻的平天球坐标系。作用:用于研究卫星运动等。第72页/共96页7.6.1 历元平天球坐标系与瞬时极历元平天球坐标系与瞬时极(真)天球坐标系(真)天球坐标系 应用大地测量学应用大地测量学 (三)两种坐标系的转换两次旋转两次旋转(1)通过岁差旋转参数将历元平天球坐标转换为观测时刻的平天球坐标。(2)通过章动旋转参数将观测时刻平天球坐标转换为观测时刻的瞬时极天球坐标。岁差参数和章动参数通过天文观测求得,可从天文年历中查取。第73页/共96页 应用大地测量学应用大地测量学7.6.1 历元平天球坐标系与瞬时极(真)

50、天球坐历元平天球坐标系与瞬时极(真)天球坐标系标系7.6.2 瞬时极(真)地球坐标系与平地球坐标系瞬时极(真)地球坐标系与平地球坐标系7.6.3 瞬时极(真)天球坐标系与瞬时极(真)瞬时极(真)天球坐标系与瞬时极(真)地球坐标系地球坐标系7.6 天球坐标系与地球坐标系的转换天球坐标系与地球坐标系的转换第74页/共96页7.6.2 瞬时极(真)地球坐标系与瞬时极(真)地球坐标系与平地球坐标系平地球坐标系 应用大地测量学应用大地测量学(一)瞬时极(真)地球坐标系(一)瞬时极(真)地球坐标系 瞬时极地球坐标系即真地球坐标系。原点:为地球质心。Z轴:指向瞬时地球自转方向。X轴:指向瞬时赤道面和包含瞬时

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁