多边形的内角和和外角和第二课时讲稿.pptx

上传人:石*** 文档编号:87095212 上传时间:2023-04-16 格式:PPTX 页数:25 大小:1.47MB
返回 下载 相关 举报
多边形的内角和和外角和第二课时讲稿.pptx_第1页
第1页 / 共25页
多边形的内角和和外角和第二课时讲稿.pptx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《多边形的内角和和外角和第二课时讲稿.pptx》由会员分享,可在线阅读,更多相关《多边形的内角和和外角和第二课时讲稿.pptx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、多边形的内角和和外角和第二课时第一页,讲稿共二十五页哦顶点顶点内角内角边边对角线对角线(连接不相邻两个顶点的线段连接不相邻两个顶点的线段)这这里里所所说说的的多多边边形形都都指指凸凸多多边边形形在平面内,由在平面内,由若干若干条不在同一条直线上的线段首条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做尾顺次相连组成的封闭图形叫做多边形多边形.第二页,讲稿共二十五页哦 我们现在研究的是如图我们现在研究的是如图1所示的多边形,所示的多边形,是凸多边形;是凸多边形;如图如图2所示的多边形,是凹所示的多边形,是凹多边形,但不在现在研究的范围中。今后多边形,但不在现在研究的范围中。今后如果不说明,我

2、们讲的多边形都是凸多边如果不说明,我们讲的多边形都是凸多边形。形。图图 2比一比图1 第三页,讲稿共二十五页哦凸多边形凸多边形凸多边形凸多边形凹多边形凹多边形我们所说的多边形都是指凸多边形我们所说的多边形都是指凸多边形我们所说的多边形都是指凸多边形我们所说的多边形都是指凸多边形多边形多边形第四页,讲稿共二十五页哦复习回顾:复习回顾:从从 多边形的一个顶点可以引出(多边形的一个顶点可以引出(n-3)条对角线,条对角线,把把n 边形分成边形分成(n-2)个三角形。个三角形。从而得出:从而得出:n 边形的内角和是边形的内角和是(n-2)180。正多边形定义正多边形定义:在平面内,每个内角都相等、在平

3、面内,每个内角都相等、每条边也都相等的多边形叫做正多边形。每条边也都相等的多边形叫做正多边形。第五页,讲稿共二十五页哦 清晨,小明沿一个五边形广场周围的小路,清晨,小明沿一个五边形广场周围的小路,按逆时针方向跑步。按逆时针方向跑步。第六页,讲稿共二十五页哦(1 1)小明每从一条街道转到下一条街道时,身)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?体转过的角是哪个角?(2 2)他每跑完一圈,身体转过的角度之和是多)他每跑完一圈,身体转过的角度之和是多少?少?(3 3)在上图中,你能求出)在上图中,你能求出 1+1+2+2+3+3+4+4+5 5的结果吗?你是怎样得到的?的结果吗?你是

4、怎样得到的?问题问题第七页,讲稿共二十五页哦结论:结论:1+1+2+2+3+3+4+4+5=360 5=360CABCDEADEBO12345问题解决问题解决第八页,讲稿共二十五页哦1.1.如果广场的形状是六边形,那么还有类似如果广场的形状是六边形,那么还有类似的结论吗?的结论吗?2.2.如果广场的形状是八边形呢?如果广场的形状是八边形呢?问题引申问题引申第九页,讲稿共二十五页哦1.1.多边形内角的多边形内角的一边与另一边的反向延长线一边与另一边的反向延长线所组成所组成的角叫做这个多边形的外角。的角叫做这个多边形的外角。2.2.在每个顶点处取在每个顶点处取这个多边形的一个外角,它们的这个多边形

5、的一个外角,它们的和和叫做这个多边形的外角和。叫做这个多边形的外角和。多边形多边形第十页,讲稿共二十五页哦多边形的外角和等于多少?多边形的外角和等于多少?探索研究探索研究方法方法:类似探究多边形的内角和的方法,由三角形、:类似探究多边形的内角和的方法,由三角形、四边形、五边形四边形、五边形的外角和开始探究;的外角和开始探究;方法方法:由:由n n边形的内角和等于(边形的内角和等于(n-2n-2)180180出发,出发,探究问题。探究问题。多边形的外角和等于多边形的外角和等于360360第十一页,讲稿共二十五页哦(1 1)还有什么方法可以推导出多边形外角和公)还有什么方法可以推导出多边形外角和公

6、式?式?(2 2)利用多边形外角和的结论,能否推导出多)利用多边形外角和的结论,能否推导出多边形内角和的结论?边形内角和的结论?探索研究探索研究第十二页,讲稿共二十五页哦例例1.1.一个多边形的内角和等于它的外角和的一个多边形的内角和等于它的外角和的3 3倍,倍,它是几边形?它是几边形?典例精析典例精析解:设这个多边形是解:设这个多边形是n n边形,则它的内角和为边形,则它的内角和为(n-2n-2)180180,外角和为,外角和为360360。则根据题意,则根据题意,得(得(n-2n-2)180180=3=3360360 解得解得n=8n=8所以这个多边形是八边形。所以这个多边形是八边形。第十

7、三页,讲稿共二十五页哦1.1.一个多边形的内角和是外角和的一个多边形的内角和是外角和的2 2倍,这倍,这个多边形是几边形个多边形是几边形?如果这个多边形的每个如果这个多边形的每个内角都相等,那么每个内角等于多少度?内角都相等,那么每个内角等于多少度?2.2.下图是三个完全相同的正多边形拼成的无缝下图是三个完全相同的正多边形拼成的无缝隙、不重叠的图形的一部分,这种多边形是几隙、不重叠的图形的一部分,这种多边形是几边形?为什么?边形?为什么?随堂练习随堂练习第十四页,讲稿共二十五页哦挑战自我挑战自我在四边形的四个内角中,最多能有几个钝角?最在四边形的四个内角中,最多能有几个钝角?最多能有几个锐角?

8、多能有几个锐角?第十五页,讲稿共二十五页哦1.1.多边形的外角及外角和的定义;多边形的外角及外角和的定义;2.2.多边形的外角和等于多边形的外角和等于360360;3.3.在探求过程中我们使用了在探求过程中我们使用了观察、归纳观察、归纳的数学方的数学方法,并且运用了法,并且运用了类比、转化类比、转化等数学思想。等数学思想。课时小结课时小结第十六页,讲稿共二十五页哦作作 业:业:习题习题68 第第1,2,3,4,5题题第十七页,讲稿共二十五页哦随堂小练1下列说法中正确的是()DA由一些线段相接组成的图形叫做多边形B三角形不是多边形C三角形有 3 条对角线Dn 边形的边数 n 的最小值是 32五边

9、形有_条对角线5第十八页,讲稿共二十五页哦n 边形的内角和(重难点)n 边形的内角和是_(n2)180随堂小练3一个多边形的内角和为 1 440,则该多边形是_边形十4多边形的内角和不可能为()BA180C1 080B680D1 980第十九页,讲稿共二十五页哦多边形的外角和在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和多边形的外角和都等于_360随堂小练5一个多边形的每一个外角都等于 36,则该多边形的内角和等于_1 440第二十页,讲稿共二十五页哦七第二十一页,讲稿共二十五页哦多边形的边数一个多边形的各内角都等于 135,求该多边形的边数解:方法一:各内角都等于 135

10、,则这个多边形的内角和为 n135,则可列方程求出设这个多边形的边数为 n,则(n2)180n135,n8,该多边形的边数是 8.第二十二页,讲稿共二十五页哦【规律总结】当多边形每个内角相等时,每个外角也相等;求多边形边数常用列方程的方法来计算第二十三页,讲稿共二十五页哦如图所示的模板如图所示的模板,按规定按规定按规定按规定AB,CDAB,CDAB,CDAB,CD的的的的延长线相交成延长线相交成延长线相交成延长线相交成80808080的角的角的角的角,因交点不在因交点不在因交点不在因交点不在板上板上板上板上,不便测量,质检员测得不便测量,质检员测得不便测量,质检员测得不便测量,质检员测得BAE

11、=122BAE=122BAE=122BAE=122,DCF=155.DCF=155.如果你是质检员如果你是质检员如果你是质检员如果你是质检员,如何知道模板是否如何知道模板是否合格合格?为什么为什么为什么为什么?分析:分析:分析:分析:五边形内角和为五边形内角和为五边形内角和为五边形内角和为540540,G=540-122-155-180=8380G=540-122-155-180=8380因此这个模板不合格。因此这个模板不合格。因此这个模板不合格。因此这个模板不合格。学以致用学以致用第二十四页,讲稿共二十五页哦练习练习1 1、n n边形的内角和等于边形的内角和等于边形的内角和等于边形的内角和等

12、于_,九边形的内角和等于,九边形的内角和等于,九边形的内角和等于,九边形的内角和等于_。2 2、一个多边形的内角和等于、一个多边形的内角和等于、一个多边形的内角和等于、一个多边形的内角和等于14401440,那么它是,那么它是,那么它是,那么它是_边形。边形。边形。边形。3 3、正五边形的每一个内角的度数是、正五边形的每一个内角的度数是、正五边形的每一个内角的度数是、正五边形的每一个内角的度数是_。4 4、从六边形的一个顶点出发可画从六边形的一个顶点出发可画从六边形的一个顶点出发可画从六边形的一个顶点出发可画_条对角线,这些对角线把六边条对角线,这些对角线把六边条对角线,这些对角线把六边条对角线,这些对角线把六边形分成形分成形分成形分成_个三角形。个三角形。个三角形。个三角形。5 5、一个六边形共有一个六边形共有一个六边形共有一个六边形共有_条对角线。条对角线。条对角线。条对角线。(n-2)(n-2)180180(9-2)(9-2)180180=12601260十十十十108108三三三三四四四四3+3+2+1=99 9第二十五页,讲稿共二十五页哦

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁