《主成份分析 因子分析.ppt》由会员分享,可在线阅读,更多相关《主成份分析 因子分析.ppt(106页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、主成份分析因子分析因子分析的重点因子分析的重点v1 1、什么是因子分析?、什么是因子分析?v2 2、理解因子分析的基本思想、理解因子分析的基本思想v3 3、因子分析的数学模型以及模型中公共因子、因子分析的数学模型以及模型中公共因子、因子载荷变量共同度的统计意义因子载荷变量共同度的统计意义v4 4、因子旋转的意义、因子旋转的意义 v5 5、结合、结合SPSSSPSS软件进行案例分析软件进行案例分析zf2v4 4、主成分分析分析与因子分析的联系和差异:、主成分分析分析与因子分析的联系和差异:联系:联系:(1 1)因子分析是主成分分析的推广,是主成分分析的逆问题。)因子分析是主成分分析的推广,是主成
2、分分析的逆问题。(2 2)二者都是以)二者都是以降维降维为目的,都是从协方差矩阵或相关系数矩阵为目的,都是从协方差矩阵或相关系数矩阵出发。出发。区别区别:(1 1)主成分分析模型是原始变量的线性组合,是将原始变量主成分分析模型是原始变量的线性组合,是将原始变量加以综合、归纳,仅仅是变量变换;而因子分析是将原始变量加以分加以综合、归纳,仅仅是变量变换;而因子分析是将原始变量加以分解,描述原始变量协方差矩阵结构的模型;只有当提取的公因子个数解,描述原始变量协方差矩阵结构的模型;只有当提取的公因子个数等于原始变量个数时,因子分析才对应变量变换。(等于原始变量个数时,因子分析才对应变量变换。(2 2)
3、主成分分析,)主成分分析,中每个主成分对应的系数是唯一确定的;因子分析中每个因子的相应中每个主成分对应的系数是唯一确定的;因子分析中每个因子的相应系数即因子载荷不是唯一的。(系数即因子载荷不是唯一的。(3 3)因子分析中因子载荷的不唯一性有)因子分析中因子载荷的不唯一性有利于对公因子进行有效解释;而主成分分析对提取的主成分的解释能利于对公因子进行有效解释;而主成分分析对提取的主成分的解释能力有限。力有限。zf6v5 5、因子分析模型:、因子分析模型:设设 个变量,如果表示为个变量,如果表示为zf7(1 1)(2 2)称称为为 公公共共因因子子,是是不不可可观观测测的的变变量量,他他们们的的系系
4、数数称称为为因因子子载载荷荷。是是特特殊殊因因子子,是是不不能能被被前前m m个公共因子包含的部分。其中:个公共因子包含的部分。其中:相互独立即不相关;相互独立即不相关;即即 互不相关,方差为互不相关,方差为1 1。zf8(3 3)即互不相关,方差不一定相等,即互不相关,方差不一定相等,。满足以上条件的,称为满足以上条件的,称为正交因子模型正交因子模型如如果果()不不成成立立,即即 各各公公共共因因子子之之间间不不独独立立,则因子分析模型为则因子分析模型为斜交因子模型斜交因子模型zf9公因子公因子F1公因子公因子F2共同度共同度hi特殊因子特殊因子ix1=代数代数10.8960.3410.91
5、90.081x2=代数代数20.8020.4960.8890.111x3=几何几何0.5160.8550.9970.003x4=三角三角0.8410.4440.9040.096x5=解析几何解析几何0.8330.4340.8820.118特征值特征值 G3.1131.4794.9590.409方差贡献率方差贡献率(变异量)(变异量)62.26%29.58%91.85%因子分析案例因子分析案例F F1 1 体现逻辑思维和运算能力,体现逻辑思维和运算能力,F F2 2 体现空间思维和推理能力体现空间思维和推理能力zf10v6 6、因子分析模型中的几个重要统计量的意义:、因子分析模型中的几个重要统计
6、量的意义:(1 1)因子负荷量(或称因子载荷)因子负荷量(或称因子载荷)-是指因子结是指因子结构中原始变量与因子分析时抽取出的公共因子的相构中原始变量与因子分析时抽取出的公共因子的相关程度。关程度。zf11 在在各各公公共共因因子子不不相相关关的的前前提提下下,(载载荷荷矩矩阵阵中中第第i i行行,第第j j列列的的元元素素)是是随随机机变变量量xi*与与公公共共因因子子F Fj j的的相相关关系系数数,表表示示x xi i*依依赖赖于于F Fj j的的程程度度。反反映映了了第第i i个个原原始始变变量量在在第第j j个个公公共共因因子子上上的的相相对对重重要要性性。因因此此 绝绝对对值值越越
7、大大,则则公公共共因因子子F Fj j与与原原有有变变量量x xi i的的关系越强。关系越强。zf12(2 2)共同度共同度-又称共性方差或公因子方差又称共性方差或公因子方差(community或或commonvariance)就是变量与每个公共因子之负荷量的就是变量与每个公共因子之负荷量的平方总和(一行中所有因素负荷量的平方和)。平方总和(一行中所有因素负荷量的平方和)。变量变量 的共同度是因子载荷矩阵的第的共同度是因子载荷矩阵的第i i行的元素的平方和。记为行的元素的平方和。记为 从共同性的大小可以判断这个原始实测变量与公共因从共同性的大小可以判断这个原始实测变量与公共因子间之关系程度。如
8、因子分析案例中子间之关系程度。如因子分析案例中 共同度共同度h h1 12 2=(0.896)=(0.896)平方平方+(0.341)+(0.341)平方平方=0.919=0.919l特殊因子方差(剩余方差)特殊因子方差(剩余方差)-各变量的特殊因素影响大小就各变量的特殊因素影响大小就是是1 1减掉该变量共同度的值。如减掉该变量共同度的值。如 =1-0.919=0.081=1-0.919=0.081zf13统计意义统计意义:两边求方差两边求方差 所有的公共因子和特殊因子对变量所有的公共因子和特殊因子对变量 的贡献为的贡献为1 1。h hi i2 2反映了全反映了全部公共因子对变量部公共因子对变
9、量X Xi i*的影响,是全部公共因子对变量方差所做出的影响,是全部公共因子对变量方差所做出的贡献,或者说的贡献,或者说X Xi i*对公共因子的共同依赖程度,称为公共因子对对公共因子的共同依赖程度,称为公共因子对变量变量X Xi i*的方差贡献。的方差贡献。H Hi i2 2接近于接近于1 1,表明该变量的原始信息几乎都被选取的公共因子说,表明该变量的原始信息几乎都被选取的公共因子说明了。明了。特殊因子的方差,反映了原有变量方差中无法被公共因子特殊因子的方差,反映了原有变量方差中无法被公共因子描述的比例。描述的比例。zf14(3 3)特征值特征值-是第是第j j个公共因子个公共因子F Fj
10、j对于对于X X*的每一分量的每一分量X Xi i*所提所提供的方差的总和。又称第供的方差的总和。又称第j j个公共因子的方差贡献。即个公共因子的方差贡献。即每个每个变量与某一共同因素之因素负荷量的平方总和变量与某一共同因素之因素负荷量的平方总和(因子载荷矩(因子载荷矩阵中某一公共因子列所有因子负荷量的平方和)。阵中某一公共因子列所有因子负荷量的平方和)。如因子分析案例中如因子分析案例中 F1F1的特征值的特征值 G=G=(0.8960.896)平方平方+(0.8020.802)平方)平方+(0.5160.516)平方)平方+(0.8410.841)平方)平方+(0.8330.833)平方平方
11、=3.113=3.113(4 4)方差贡献率)方差贡献率-指公共因子对实测变量的贡献,又称变异指公共因子对实测变量的贡献,又称变异量量 方差贡献率方差贡献率=特征值特征值G/G/实测变量数实测变量数p p,是衡量公共因子相对重要性的指标,是衡量公共因子相对重要性的指标,G Gi i越大,表明公共越大,表明公共因子因子F Fj j对对X X*的贡献越大,该因子的重要程度越高的贡献越大,该因子的重要程度越高 如因子分析案例中如因子分析案例中 F1F1的贡献率为的贡献率为3.113/5=62.26%3.113/5=62.26%zf156.2 6.2 因子的基本内容因子的基本内容v1 1、因子分析的基
12、本步骤:、因子分析的基本步骤:(1 1)因子分析的前提条件鉴定)因子分析的前提条件鉴定 考察原始变量之间是否存在较强的相关关系,是否适考察原始变量之间是否存在较强的相关关系,是否适合进行因子分析。因为:合进行因子分析。因为:因子分析的主要任务之一就是对原有变量中信息重因子分析的主要任务之一就是对原有变量中信息重叠的部分提取和综合成因子,最终实现减少变量个数的叠的部分提取和综合成因子,最终实现减少变量个数的目的。所以要求原有变量之间应存在较强的相关关系。目的。所以要求原有变量之间应存在较强的相关关系。否则,如果原有变量相互独立,不存在信息重叠,也就否则,如果原有变量相互独立,不存在信息重叠,也就
13、无需进行综合和因子分析。无需进行综合和因子分析。(2 2)因子提取)因子提取 研究如何在样本数据的基础上提取综合因子。研究如何在样本数据的基础上提取综合因子。zf16(3 3)因子旋转)因子旋转 通过正交旋转或斜交旋转使提取出的因子具有可通过正交旋转或斜交旋转使提取出的因子具有可解释性。解释性。(4 4)计算因子得分)计算因子得分 通过各种方法求解各样本在各因子上的得分,为通过各种方法求解各样本在各因子上的得分,为进一步分析奠定基础。进一步分析奠定基础。zf17v2 2、因子分析前提条件、因子分析前提条件相关性分析:相关性分析:分析方法主要有:分析方法主要有:(1 1)计算相关系数矩阵)计算相
14、关系数矩阵(correlation correlation coefficients matrix)coefficients matrix)如果相关系数矩阵中的大部分相关系数值如果相关系数矩阵中的大部分相关系数值均小于均小于0.30.3,即各变量间大多为弱相关,原,即各变量间大多为弱相关,原则上这些变量不适合进行因子分析。则上这些变量不适合进行因子分析。(2 2)计算反映象相关矩阵()计算反映象相关矩阵(Anti-image Anti-image correlation matrix)correlation matrix)zf18 反映象相关矩阵,如果其主对角线外的元素大多绝反映象相关矩阵,如
15、果其主对角线外的元素大多绝对值较小,对角线上的元素值较接近对值较小,对角线上的元素值较接近1 1,则说明这些变,则说明这些变量的相关性较强,适合进行因子分析。量的相关性较强,适合进行因子分析。其中主对角线上的元素为某变量的其中主对角线上的元素为某变量的MSA(Measure of MSA(Measure of Sample Adequacy)Sample Adequacy):是变量是变量 和变量和变量 ()间的简单相关系数,是间的简单相关系数,是变量变量 和变量和变量 ()在控制了其他变量影响下的偏在控制了其他变量影响下的偏相关系数,即净相关系数。相关系数,即净相关系数。取值在取值在0 0和和
16、1 1之间,越接之间,越接近近1 1,意味着变量,意味着变量 与其他变量间的相关性越强,越接与其他变量间的相关性越强,越接近近0 0则相关性越弱。则相关性越弱。zf19(3 3)巴特利特球度检验()巴特利特球度检验(Bartlett test of Bartlett test of sphericity)sphericity)该检验以原有变量的相关系数矩阵为出发点,其零该检验以原有变量的相关系数矩阵为出发点,其零假设假设H0H0是:相关系数矩阵为单位矩阵,即相关系数矩阵是:相关系数矩阵为单位矩阵,即相关系数矩阵主对角元素均为主对角元素均为1 1,非主对角元素均为,非主对角元素均为0 0。(即原
17、始变量。(即原始变量之间无相关关系)。之间无相关关系)。依据相关系数矩阵的行列式计算可得其近似服从卡依据相关系数矩阵的行列式计算可得其近似服从卡方分布。如果统计量卡方值较大且对应的方分布。如果统计量卡方值较大且对应的sigsig值小于给值小于给定的显著性水平定的显著性水平a a时,零假设不成立。即说明相关系数时,零假设不成立。即说明相关系数矩阵不太可能是单位矩阵,变量之间存在相关关系,适矩阵不太可能是单位矩阵,变量之间存在相关关系,适合做因子分析。合做因子分析。zf20(4 4)KMO(Kaiser-Meyer-Olkin)KMO(Kaiser-Meyer-Olkin)检验检验 KMOKMO检
18、验的统计量是用于比较变量间简单相关系数矩阵检验的统计量是用于比较变量间简单相关系数矩阵和偏相关系数的指标,数学定义为:和偏相关系数的指标,数学定义为:KMO KMO与与MSAMSA区别是它将相关系数矩阵中的所有元素都加入区别是它将相关系数矩阵中的所有元素都加入到了平方和计算中。到了平方和计算中。KMOKMO值越接近值越接近1 1,意味着变量间的相,意味着变量间的相关性越强,原有变量适合做因子分析;越接近关性越强,原有变量适合做因子分析;越接近0 0,意味,意味变量间的相关性越弱,越不适合作因子分析。变量间的相关性越弱,越不适合作因子分析。KaiserKaiser给出的给出的KMOKMO度量标准
19、:度量标准:0.90.9以上非常适合;以上非常适合;0.80.8表示适合;表示适合;0.70.7表示一般;表示一般;0.60.6表示不太适合;表示不太适合;0.50.5以下表示极不适以下表示极不适合。合。zf21v3 3、因子提取和因子载荷矩阵的求解:、因子提取和因子载荷矩阵的求解:因子载荷矩阵求解的方法:因子载荷矩阵求解的方法:(1 1)基于主成分模型的主成分分析法)基于主成分模型的主成分分析法 (2 2)基于因子分析模型的主轴因子法)基于因子分析模型的主轴因子法 (3 3)极大似然法极大似然法 (4 4)最小二乘法)最小二乘法 (5 5)a a因子提取法因子提取法 (6 6)映象分析法)映
20、象分析法zf22(1 1)基于主成分模型的主成分分析法)基于主成分模型的主成分分析法Principal Principal componentscomponents 设随机向量 的均值为,协方差为,为的特征根,为对应的标准化特征向量,则zf23o上式给出的上式给出的 表达式是精确的,然而,它实际上是毫无表达式是精确的,然而,它实际上是毫无价值的,因为我们的目的是寻求用少数几个公共因子解价值的,因为我们的目的是寻求用少数几个公共因子解释,故略去后面的释,故略去后面的p-mp-m项的贡献,有:项的贡献,有:zf24o上式有一个假定,模型中的特殊因子是不重要的,因而上式有一个假定,模型中的特殊因子是
21、不重要的,因而从从 的分解中忽略了特殊因子的方差。的分解中忽略了特殊因子的方差。zf25 例例:假定某地固定资产投资率假定某地固定资产投资率 ,通货膨胀率,通货膨胀率 ,失业率失业率 ,相关系数矩阵为,相关系数矩阵为试用主成分分析法求因子分析模型。试用主成分分析法求因子分析模型。zf26(1)(1)求解特征根求解特征根(2)(2)求解特征向量:求解特征向量:(3)(3)因子载荷矩阵:因子载荷矩阵:zf27(4)(4)因子分析模型:因子分析模型:可取前两个因子可取前两个因子F1F1和和F F2 2为公共因子,第一公因子为公共因子,第一公因子F F1 1物价就业因子,对物价就业因子,对X X的贡献
22、为的贡献为1.551.55。第一公因子。第一公因子F F2 2为投为投资因子,对资因子,对X X的贡献为的贡献为0.850.85。共同度分别为。共同度分别为1 1,0.7060.706,0.7060.706。zf28(2 2)基于因子分析模型的主轴因子法)基于因子分析模型的主轴因子法Principal Principal axis factoringaxis factoring 是对主成分方法的修正,假定我们首先对变量进是对主成分方法的修正,假定我们首先对变量进行标准化变换。则行标准化变换。则 R=AA+DR=AA+D R R*=AA=R-D=AA=R-D称称R R*为约相关矩阵,为约相关矩阵
23、,R R*对角线上的元素是对角线上的元素是 ,而不是而不是1 1。zf29 直接求直接求R R*的前的前p p个特征根和对应的正交特征向个特征根和对应的正交特征向量。得如下的矩阵:量。得如下的矩阵:zf30当特殊因子当特殊因子 的方差的方差已知:已知:zf31方差矩阵未知,估计的方法有如下几种:方差矩阵未知,估计的方法有如下几种:1 1)取)取 ,在这个情况下主因子解与主成分解等价;,在这个情况下主因子解与主成分解等价;2 2)取)取 ,为为x xi i与其他所有的原始变量与其他所有的原始变量x xj j的复相关系数的复相关系数的平方,即的平方,即x xi i对其余的对其余的p-1p-1个个x
24、 xj j的回归方程的判定系数,这是因的回归方程的判定系数,这是因为为x xi i 与公共因子的关系是通过其余的与公共因子的关系是通过其余的p-1p-1个个x xj j 的线性组合联系的线性组合联系起来的;起来的;3 3)取)取 ,这意味着取,这意味着取x xi i与其余的与其余的x xj j的简的简单相关系数的绝对值最大者;单相关系数的绝对值最大者;zf32 4 4)取)取 ,其中要求该值为正数。,其中要求该值为正数。5 5)取)取 ,其中,其中 是是 的对角元素。的对角元素。zf33 例:例:假定某地固定资产投资率假定某地固定资产投资率 ,通货膨胀率,通货膨胀率 ,失业率,失业率 ,相关系
25、数矩阵为,相关系数矩阵为试用主因子分析法求因子分析模型。假定用试用主因子分析法求因子分析模型。假定用代替初始的代替初始的 。zf34(1 1)求解特征根:)求解特征根:(2 2)对应的非)对应的非0 0特征向量:特征向量:(3 3)因子载荷矩阵表:)因子载荷矩阵表:zf35(4 4)因子分析模型:)因子分析模型:(5 5)新的共同度:)新的共同度:zf36v4 4、因子旋转:、因子旋转:为什么要旋转因子?为什么要旋转因子?建立了因子分析数学目的不仅仅要找出公共因子以及建立了因子分析数学目的不仅仅要找出公共因子以及对变量进行分组,更重要的要知道每个公共因子的意义,对变量进行分组,更重要的要知道每
26、个公共因子的意义,以便进行进一步的分析,如果每个公共因子的含义不清,以便进行进一步的分析,如果每个公共因子的含义不清,则不便于进行实际背景的解释。则不便于进行实际背景的解释。由于因子载荷阵是不惟由于因子载荷阵是不惟一的,所以应该对因子载荷阵进行旋转。一的,所以应该对因子载荷阵进行旋转。目的是目的是使每个使每个变量在尽可能少的因子上有比较高的载荷,让某个变量变量在尽可能少的因子上有比较高的载荷,让某个变量在某个因子上的载荷趋于在某个因子上的载荷趋于1 1,而在其他因子上的载荷趋,而在其他因子上的载荷趋于于0 0。即:即:使载荷矩阵每列或行的元素平方值向使载荷矩阵每列或行的元素平方值向0 0和和1
27、 1两两极分化。极分化。zf37奥运会十项全能运动项目奥运会十项全能运动项目得分数据的因子分析得分数据的因子分析 百米跑成绩百米跑成绩 跳远成绩跳远成绩 铅球成绩铅球成绩 跳高成绩跳高成绩 400 400米跑成绩米跑成绩 百米跨栏百米跨栏 铁饼成绩铁饼成绩 撑杆跳远成绩撑杆跳远成绩 标枪成绩标枪成绩 1500 1500米跑成绩米跑成绩 zf38zf39因因子子载载荷荷矩矩阵阵 因子载荷矩阵可以看出,除第一因子在所有的变量在公共因子上有因子载荷矩阵可以看出,除第一因子在所有的变量在公共因子上有较大的正载荷,可以称为一般运动因子。其他的较大的正载荷,可以称为一般运动因子。其他的3 3个因子不太容易
28、解释。个因子不太容易解释。似乎是跑和投掷的能力对比,似乎是长跑耐力和短跑速度的对比。于是似乎是跑和投掷的能力对比,似乎是长跑耐力和短跑速度的对比。于是考虑旋转因子,得下表考虑旋转因子,得下表zf40旋转变幻后因子载荷矩阵旋转变幻后因子载荷矩阵zf41 通过旋转,因子有了较为明确的含义。通过旋转,因子有了较为明确的含义。百米跑,百米跑,跳跳远远和和 400400米米跑跑,需需要要爆爆发发力力的的项项目目在在 有有较较大大的的载载荷,荷,可以称为短跑速度因子;可以称为短跑速度因子;铅铅球球,铁铁饼饼和和 标标枪枪在在 上上有有较较大大的的载载荷荷,可可以称为爆发性臂力因子;以称为爆发性臂力因子;百
29、百米米跨跨栏栏,撑撑杆杆跳跳远远,跳跳远远和和为为 跳跳高高在在 上有较大的载荷,上有较大的载荷,爆发腿力因子;爆发腿力因子;长跑耐力因子。长跑耐力因子。zf42 旋转的方法旋转的方法有:有:(1 1)正交旋转;()正交旋转;(2 2)斜交旋转)斜交旋转(1 1)正交旋转)正交旋转 由初始载荷矩阵由初始载荷矩阵A A左乘一正交矩阵得到;左乘一正交矩阵得到;目的是新的载目的是新的载荷系数尽可能的接近于荷系数尽可能的接近于0 0或尽可能的远离或尽可能的远离0 0;只是在;只是在旋转旋转后的新的公因子仍保持独立性。主要有以下方法:后的新的公因子仍保持独立性。主要有以下方法:varimax:varim
30、ax:方差最大旋转。简化对因子的解释方差最大旋转。简化对因子的解释quartmax:quartmax:四次最大正交旋转。简化对变量的解释四次最大正交旋转。简化对变量的解释equamax:equamax:等量正交旋转等量正交旋转zf43A A、方差最大法方差最大法 方差最大法从简化因子载荷矩阵的每一方差最大法从简化因子载荷矩阵的每一列列出发,使出发,使和每个因子有关的载荷的平方的方差最大。当只有少数和每个因子有关的载荷的平方的方差最大。当只有少数几个变量在某个因子上有较高的载荷时,对因子的解释几个变量在某个因子上有较高的载荷时,对因子的解释最简单。最简单。方差最大的直观意义是希望通过因子旋转后,
31、方差最大的直观意义是希望通过因子旋转后,使每个因子上的载荷尽量拉开距离,一部分的载荷趋于使每个因子上的载荷尽量拉开距离,一部分的载荷趋于 1 1,另一部分趋于,另一部分趋于0 0。zf44B B、四次方最大旋转四次方最大旋转 四次方最大旋转是从简化载荷矩阵的四次方最大旋转是从简化载荷矩阵的行行出发,通过旋出发,通过旋转初始因子,使每个变量只在一个因子上有较高的载荷,转初始因子,使每个变量只在一个因子上有较高的载荷,而在其它的因子上尽可能低的载荷。如果每个变量只在而在其它的因子上尽可能低的载荷。如果每个变量只在一个因子上有非零的载荷,这时的因子解释一个因子上有非零的载荷,这时的因子解释是最简单的
32、。是最简单的。四次方最大法通过使因子载荷矩阵中每一行的因子四次方最大法通过使因子载荷矩阵中每一行的因子载荷平方的方差达到最大。载荷平方的方差达到最大。zf45C C、等量最大法等量最大法 等量最大法把四次方最大法和方差最大法结合起来等量最大法把四次方最大法和方差最大法结合起来求行和列因子载荷平方的方差的加权平均最大。求行和列因子载荷平方的方差的加权平均最大。zf46(2 2)斜交旋转)斜交旋转 目的是新的载荷系数尽可能的接近于目的是新的载荷系数尽可能的接近于0 0或尽可能的远或尽可能的远离离0 0;只是在旋转时,放弃了因子之间彼此独立的限制,;只是在旋转时,放弃了因子之间彼此独立的限制,旋转后
33、的新公因子更容易解释。主要有以下的方法:旋转后的新公因子更容易解释。主要有以下的方法:direct oblimin:direct oblimin:直接斜交旋转。允许因子之间具有相关性;直接斜交旋转。允许因子之间具有相关性;promax:promax:斜交旋转方法。允许因子之间具有相关性;斜交旋转方法。允许因子之间具有相关性;zf47v5 5、因子得分、因子得分因子得分的概念因子得分的概念 前面我们主要解决了用公共因子的线性组合来表示前面我们主要解决了用公共因子的线性组合来表示一组观测变量的有关问题。如果我们要使用这些因子做一组观测变量的有关问题。如果我们要使用这些因子做其他的研究,比如把得到的
34、因子作为自变量来做回归分其他的研究,比如把得到的因子作为自变量来做回归分析,对样本进行分类或评价,这就需要我们对公共因子析,对样本进行分类或评价,这就需要我们对公共因子进行测度,即给出进行测度,即给出公共因子的值公共因子的值。zf48例例:人人均均要要素素变变量量因因子子分分析析。对对我我国国3232个个省省市市自自治治区区的的要要素素状状况况作作因子分析。指标体系中有如下指标:因子分析。指标体系中有如下指标:X1 X1:人口(万人)人口(万人)X2 X2:面积(万平方公里)面积(万平方公里)X3 X3:GDPGDP(亿元)亿元)X4 X4:人均水资源(立方米人均水资源(立方米/人)人)X5X
35、5:人均生物量(吨人均生物量(吨/人)人)X6X6:万人拥有的大学生数(人)万人拥有的大学生数(人)X7X7:万人拥有科学家、工程师数(人)万人拥有科学家、工程师数(人)Rotated Factor PatternRotated Factor Pattern FACTOR1 FACTOR2 FACTOR3 FACTOR1 FACTOR2 FACTOR3 X1 -0.21522 -0.27397 0.89092 X1 -0.21522 -0.27397 0.89092 X2 0.63973 -0.28739 -0.28755 X2 0.63973 -0.28739 -0.28755 X3 -0.
36、15791 0.06334 0.94855 X3 -0.15791 0.06334 0.94855 X4 0.95898 -0.01501 -0.07556 X4 0.95898 -0.01501 -0.07556 X5 0.97224 -0.06778 -0.17535 X5 0.97224 -0.06778 -0.17535 X6 -0.11416 0.98328 -0.08300 X6 -0.11416 0.98328 -0.08300 X7 -0.11041 0.97851 -0.07246 X7 -0.11041 0.97851 -0.07246zf49 X1=-0.21522F1-
37、0.27397F2+0.89092F3 X2=0.63973F1-0.28739F2-0.28755F3 X3=-0.15791F1+0.06334F2+0.94855F3 X4=0.95898F1-0.01501F2-0.07556F3 X5=0.97224F1-0.06778F2-0.17535F3 X6=-0.11416F1+0.98328F2-0.08300F3 X7=-0.11041F1+0.97851F2-0.07246F3zf50高载荷指标高载荷指标因子命名因子命名因子因子1 1X2X2;面积(万平方公里)面积(万平方公里)X4:X4:人均水资源(立方米人均水资源(立方米/人)人
38、)X5:X5:人均生物量(吨人均生物量(吨/人)人)自然资源因子自然资源因子因子因子2 2X6X6:万人拥有的大学生数(人)万人拥有的大学生数(人)X7X7:万万人人拥拥有有的的科科学学家家、工工程程师师数数(人)(人)人力资源因子人力资源因子因子因子3 3X1;X1;人口(万人)人口(万人)X3:GDP(X3:GDP(亿元亿元)经济发展总量因子经济发展总量因子zf51Standardized Scoring Coefficients FACTOR1 FACTOR2 FACTOR3 X1 0.05764 -0.06098 0.50391 X2 0.22724 -0.09901 -0.07713
39、 X3 0.14635 0.12957 0.59715 X4 0.47920 0.11228 0.17062 X5 0.45583 0.07419 0.10129 X6 0.05416 0.48629 0.04099 X7 0.05790 0.48562 0.04822F1=0.05764X1+0.22724X2+0.14635X3+0.47920X4+0.45583X5+0.05416X6+0.05790X7F1=0.05764X1+0.22724X2+0.14635X3+0.47920X4+0.45583X5+0.05416X6+0.05790X7F2=-0.06098X1-0.09901
40、X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F2=-0.06098X1-0.09901X2+0.12957X3+0.11228X4+0.07419X5+0.48629X6+0.48562X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.10129X5+0.04099X6+0.04822X7F3=0.50391X1-0.07713X2+0.59715X3+0.17062X4+0.10129X5+0.04099X6+0.04822X7zf52前三个因子得分前三个因子得分REGION FACTOR
41、1FACTOR2FACTOR3beijing-0.081694.23473-0.37983tianjin-0.474221.31789-0.87891hebei-0.22192-0.358020.86263shanxi1-0.48214-0.32643-0.54219neimeng0.54446-0.66668-0.92621liaoning-0.205110.463770.34087jilin-0.214990.10608-0.57431heilongj 0.10839-0.11717-0.02219shanghai-0.200692.38962-0.04259zf53因子分析的数学模型为:
42、因子分析的数学模型为:原变量被表示为公共因子的线性组合,当载荷矩阵旋原变量被表示为公共因子的线性组合,当载荷矩阵旋转之后,公共因子可以做出解释,通常的情况下,我们转之后,公共因子可以做出解释,通常的情况下,我们还想反过来把公共因子表示为原变量的线性组合。还想反过来把公共因子表示为原变量的线性组合。因子得分函数:因子得分函数:zf54o可见,要求得每个因子的得分,必须求得分函数的可见,要求得每个因子的得分,必须求得分函数的系数,而由于系数,而由于pmpm,所以不能得到精确的得分,只所以不能得到精确的得分,只能通过估计。能通过估计。o因子得分的因子得分的计算方法:计算方法:(1 1)运用回归分析思
43、想求解)运用回归分析思想求解(2 2)BartlettBartlett(3 3)Anderson-rubinAnderson-rubinzf55(1 1)运用回归分析思想求解)运用回归分析思想求解zf56则,我们有如下的方程组:则,我们有如下的方程组:zf57j=1,2,mzf58注:共需要解注:共需要解m m次才能解出次才能解出 所有的得分函数的系数。所有的得分函数的系数。zf59(2 2)BartlettBartlett法法(即:加权最小二乘法)即:加权最小二乘法)o把一个个体的p个变量的取值X*当作因变量,把求因子解中得到的A作为自变量数据阵,对于这个个体在公因子上的取值f,当作未知参数
44、,而特殊因子的取值看作误差e,于是得到如下的线性回归模型:x*=Af+e,则称未知参数f为取值为X*的因子得分。最小二乘法zf60(3 3)Anderson-rubinAnderson-rubin(略)略)zf61案例分析:案例分析:国民生活质量的因素分析国民生活质量的因素分析 国国家家发发展展的的最最终终目目标标,是是为为了了全全面面提提高高全全体体国国民民的的生生活活质质量量,满满足足广广大大国国民民日日益益增增长长的的物物质质和和文文化化的的合合理理需需求求。在在可可持持续续发发展展消消费费的的统统一一理理念念下下,增增加加社社会会财财富富,创创造造更更多多的的物物质质文文明明和和精精神
45、神文文明明,保保持持人人类类的的健健康康延延续续和和生生生生不不息息,在在人人类类与与自自然然协协同同进进化化的的基基础础上上,维维系系人人类类与与自自然然的的平平衡衡,达达到到完完整整的的代代际际公公平平和和区区际际公平公平(即时间过程的最大合理性与空间分布的最大合理化即时间过程的最大合理性与空间分布的最大合理化)。从从19901990年年开开始始,联联合合国国开开发发计计划划署署(UYNP)UYNP)首首次次采采用用“人人文文发发展展系系数数”指指标标对对于于国国民民生生活活质质量量进进行行测测度度。人人文文发发展展系系数数利利用用三三类类内内涵涵丰丰富富的的指指标标组组合合,即即人人的的
46、健健康康状状况况(使使用用出出生生时时的的人人均均预预期期寿寿命命表表达达)、人人的的智智力力程程度度(使使用用组组合合的的教教育育成成就就表表达达)、人人的的福福利利水水平平(使使用用人人均均国国民民收收入入或或人人均均GDPGDP表表达达),并并且且特特别别强强调调三三类类指指标标组组合合的的整整体体表表达达内内涵涵,去去衡衡量量一一个个国国家家或或地地区区的的社社会会发发展展总总体体状状况况以及国民生活质量的总水平。以及国民生活质量的总水平。zf62在这个指标体系中有如下的指标:X1预期寿命X2成人识字率X3综合入学率X4人均GDP(美圆)X5预期寿命指数X6教育成就指数X7人均GDP指
47、数zf63旋转后的因子结构旋转后的因子结构 Rotated Factor Rotated Factor Pattern Pattern FACTOR1 FACTOR2 FACTOR3 FACTOR1 FACTOR2 FACTOR3 X1 0.38129 0.41765 X1 0.38129 0.41765 0.817140.81714 X2 0.12166 X2 0.12166 0.848280.84828 0.45981 0.45981 X3 0.64803 X3 0.64803 0.618220.61822 0.22398 0.22398 X4 X4 0.904100.90410 0.20
48、531 0.34100 0.20531 0.34100 X5 0.38854 0.43295 X5 0.38854 0.43295 0.808480.80848 X6 0.28207 X6 0.28207 0.853250.85325 0.43289 0.43289 X7 X7 0.900910.90091 0.20612 0.35052 0.20612 0.35052 FACTOR1FACTOR1为经济发展因子为经济发展因子 FACTOR2FACTOR2为教育成就因子为教育成就因子 FACTOR3FACTOR3为健康水平因子为健康水平因子zf64被每个因子解释的方差和共同度:被每个因子解释的
49、方差和共同度:Variance explained by each factorVariance explained by each factor FACTOR1 FACTOR2 FACTOR3 FACTOR1 FACTOR2 FACTOR3 2.439700 2.276317 2.009490 2.439700 2.276317 2.009490 Final Communality Estimates:Total=6.725507 Final Communality Estimates:Total=6.725507 X1 X2 X3 X4 X5 X1 X2 X3 X4 X5 0.987530
50、 0.945796 0.852306 0.975830 0.992050 0.987530 0.945796 0.852306 0.975830 0.992050 X6 X7 X6 X7 0.994995 0.976999 0.994995 0.976999 zf65Standardized Scoring Coefficients标准化得分系数 FACTOR1 FACTOR2 FACTOR3 X1 -0.18875 -0.34397 0.85077 X2 -0.24109 0.60335 -0.10234 X3 0.35462 0.50232 -0.59895 X4 0.53990 -0.1