2022-2023学年广东省佛冈县达标名校中考一模数学试题含解析.doc

上传人:茅**** 文档编号:87069430 上传时间:2023-04-16 格式:DOC 页数:24 大小:1.07MB
返回 下载 相关 举报
2022-2023学年广东省佛冈县达标名校中考一模数学试题含解析.doc_第1页
第1页 / 共24页
2022-2023学年广东省佛冈县达标名校中考一模数学试题含解析.doc_第2页
第2页 / 共24页
点击查看更多>>
资源描述

《2022-2023学年广东省佛冈县达标名校中考一模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广东省佛冈县达标名校中考一模数学试题含解析.doc(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,在ABC中,EFBC,AB=3AE,若S四边形BCFE=16,则SABC=()A16B18C2

2、0D242定义:如果一元二次方程ax2+bx+c=0(a0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a0)满足ab+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A方有两个相等的实数根B方程有一根等于0C方程两根之和等于0D方程两根之积等于03如图是婴儿车的平面示意图,其中ABCD,1=120,3=40,那么2的度数为( )A80B90C100D1024如图,4张如图1的长为a,宽为b(ab)长方形纸片,按图2的方式放置,阴影部分的面积为S1,空白部分的面积为S2,若S22

3、S1,则a,b满足()AaBa2bCabDa3b5如图,在直角坐标系中,等腰直角ABO的O点是坐标原点,A的坐标是(4,0),直角顶点B在第二象限,等腰直角BCD的C点在y轴上移动,我们发现直角顶点D点随之在一条直线上移动,这条直线的解析式是()Ay=2x+1By=x+2Cy=3x2Dy=x+26一个半径为24的扇形的弧长等于20,则这个扇形的圆心角是()A120B135C150D1657已知关于x的方程x2+3x+a=0有一个根为2,则另一个根为()A5B1C2D58已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A3B5C1或3D1或59某商品的标

4、价为200元,8折销售仍赚40元,则商品进价为( )元ABCD10如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A(3,1)B(-4,1)C(1,-1)D(-3,1)11如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标为(0,4),将ABO绕点B逆时针旋转60后得到ABO,若函数y=(x0)的图象经过点O,则k的值为()A2B4C4D812下列运算正确的是()Aa2a3=a6B()1=2C =4D|6|=6二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,P是O的直径AB延长线上一

5、点,PC切O于点C,PC=6,BC:AC=1:2,则AB的长为_14如果,那么的结果是_.15在矩形ABCD中,AB=4, BC=3, 点P在AB上若将DAP沿DP折叠,使点A落在矩形对角线上的处,则AP的长为_16已知抛物线与直线在之间有且只有一个公共点,则的取值范围是_17如图,一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从点A到点B经过的路径长为_18若实数a、b、c在数轴上对应点的位置如图,则化简:2|a+c|+3|ab|=_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)在我校举办的“读好书、讲礼仪”活动中,

6、各班积极行动,图书角的新书、好书不断增多,除学校购买的图书外,还有师生捐献的图书,下面是九(1)班全体同学捐献图书情况的统计图(每人都有捐书)请你根据以上统计图中的信息,解答下列问题:该班有学生多少人?补全条形统计图九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇形的圆心角为多少度?请你估计全校 2000 名学生所捐图书的数量20(6分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD求证:AB=AF;若AG=AB,BCD=120,判断四边形ACDF的形状,并证明你的结论21(6分)如图,在ABC

7、D中,AB=4,AD=5,tanA=,点P从点A出发,沿折线ABBC以每秒1个单位长度的速度向中点C运动,过点P作PQAB,交折线ADDC于点Q,将线段PQ绕点P顺时针旋转90,得到线段PR,连接QR设PQR与ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒)(1)当点R与点B重合时,求t的值;(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);(3)当点R落在ABCD的外部时,求S与t的函数关系式;(4)直接写出点P运动过程中,PCD是等腰三角形时所有的t值22(8分)如图1,二次函数yax22ax3a(a0)的图象与x轴交于A、B两点(点A在点B的右侧)

8、,与y轴的正半轴交于点C,顶点为D(1)求顶点D的坐标(用含a的代数式表示);(2)若以AD为直径的圆经过点C求抛物线的函数关系式;如图2,点E是y轴负半轴上一点,连接BE,将OBE绕平面内某一点旋转180,得到PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MFx轴于点F,若线段MF:BF1:2,求点M、N的坐标;点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标23(8分)关于x的一元二次方程x2(m1)x(2m3)1(1)求证:方程总有两个不相等的实数根;(2)写出一个m的值,并求出此时方程的根24(10分)某商店在20

9、14年至2016年期间销售一种礼盒2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?25(10分)某校组织了一次初三科技小制作比赛,有ABC,D四个班共提供了100件参赛作品. C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图l和图2两幅尚不完整的统计图中 . (1)B班参赛作品有多少件?(2)请你将图的统计图

10、补充完整;(3)通过计算说明,哪个班的获奖率高?(4)将写有A,B,C,D四个字母的完全相同的卡片放入箱中,从中一次随机抽出两张卡片,求抽到A,B两班的概率 .26(12分)先化简,再求值:,其中x=,y=27(12分)如图,在矩形ABCD中,AB=3,BC=4,将矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,BC与AD交于点E,AD的延长线与AD交于点F(1)如图,当=60时,连接DD,求DD和AF的长;(2)如图,当矩形ABCD的顶点A落在CD的延长线上时,求EF的长;(3)如图,当AE=EF时,连接AC,CF,求ACCF的值参考答案一、选择题(本大题共12个小题,每小题4分,共

11、48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、B【解析】【分析】由EFBC,可证明AEFABC,利用相似三角形的性质即可求出SABC的值【详解】EFBC,AEFABC,AB=3AE,AE:AB=1:3,SAEF:SABC=1:9,设SAEF=x,S四边形BCFE=16,解得:x=2,SABC=18,故选B【点睛】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.2、C【解析】试题分析:根据已知得出方程ax2+bx+c=0(a0)有两个根x=1和x=1,再判断即可解:把x=1代入方程ax2+bx+c=0得出:a+b+c=0,把x=1代入方

12、程ax2+bx+c=0得出ab+c=0,方程ax2+bx+c=0(a0)有两个根x=1和x=1,1+(1)=0,即只有选项C正确;选项A、B、D都错误;故选C3、A【解析】分析:根据平行线性质求出A,根据三角形内角和定理得出2=1801A,代入求出即可详解:ABCD.A=3=40,1=60,2=1801A=80,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180.4、B【解析】从图形可知空白部分的面积为S2是中间边长为(ab)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影

13、部分的面积为S1是大正方形面积与空白部分面积之差,再由S22S1,便可得解【详解】由图形可知,S2=(a-b)2+b(a+b)+ab=a2+2b2,S1=(a+b)2-S2=2ab-b2,S22S1,a2+2b22(2abb2),a24ab+4b20,即(a2b)20,a2b,故选B【点睛】本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解5、D【解析】抓住两个特殊位置:当BC与x轴平行时,求出D的坐标;C与原点重合时,D在y轴上,求出此时D的坐标,设所求直线解析式为y=kx+b,将两位置D坐标代入得到关于k与b的方程组,求出方程组的解得到k与b的

14、值,即可确定出所求直线解析式【详解】当BC与x轴平行时,过B作BEx轴,过D作DFx轴,交BC于点G,如图1所示等腰直角ABO的O点是坐标原点,A的坐标是(4,0),AO=4,BC=BE=AE=EO=GF=OA=1,OF=DG=BG=CG=BC=1,DF=DG+GF=3,D坐标为(1,3);当C与原点O重合时,D在y轴上,此时OD=BE=1,即D(0,1),设所求直线解析式为y=kx+b(k0),将两点坐标代入得:,解得:则这条直线解析式为y=x+1故选D【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,等腰直角三角形的性质,坐标与图形性质,熟练运用待定系数法是解答本

15、题的关键6、C【解析】这个扇形的圆心角的度数为n,根据弧长公式得到20=,然后解方程即可【详解】解:设这个扇形的圆心角的度数为n,根据题意得20=,解得n=150,即这个扇形的圆心角为150故选C【点睛】本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径)7、B【解析】根据关于x的方程x2+3x+a=0有一个根为-2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决【详解】关于x的方程x2+3x+a=0有一个根为-2,设另一个根为m,-2+m=,解得,m=-1,故选B8、A【解析】分析:根据点A(a2,4)和B(3,2a2)到x轴的距离相等,得到4

16、|2a2|,即可解答详解:点A(a2,4)和B(3,2a2)到x轴的距离相等,4|2a2|,a23,解得:a3,故选A点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数9、B【解析】设商品进价为x元,则售价为每件0.8200元,由利润=售价-进价建立方程求出其解即可【详解】解:设商品的进价为x元,售价为每件0.8200元,由题意得0.8200=x+40解得:x=120答:商品进价为120元故选:B【点睛】此题考查一元一次方程的实际运用,掌握销售问题的数量关系利润=售价-进价,建立方程是关键10、B【解析】作出图形,结合图形进行分析可得.【详解】如

17、图所示:以AC为对角线,可以画出AFCB,F(-3,1);以AB为对角线,可以画出ACBE,E(1,-1);以BC为对角线,可以画出ACDB,D(3,1),故选B.11、C【解析】根据题意可以求得点O的坐标,从而可以求得k的值【详解】点B的坐标为(0,4),OB=4,作OCOB于点C,ABO绕点B逆时针旋转60后得到ABO,OB=OB=4,OC=4sin60=2,BC=4cos60=2,OC=2,点O的坐标为:(2,2),函数y=(x0)的图象经过点O,2=,得k=4,故选C【点睛】本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答1

18、2、D【解析】运用正确的运算法则即可得出答案.【详解】A、应该为a5,错误;B、为2,错误;C、为4,错误;D、正确,所以答案选择D项.【点睛】本题考查了四则运算法则,熟悉掌握是解决本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】PC切O于点C,则PCB=A,P=P,PCBPAC,,BP=PC=3,PC2=PBPA,即36=3PA,PA=12AB=12-3=1故答案是:1.14、1【解析】令k,则a=2k,b=3k,代入到原式化简的结果计算即可【详解】令k,则a=2k,b=3k,原式=1故答案为:1【点睛】本题考查了约分,解题的关键是掌握约分的定义:约去分式的

19、分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分15、或【解析】点A落在矩形对角线BD上,如图1,AB=4,BC=3,BD=5,根据折叠的性质,AD=AD=3,AP=AP,A=PAD=90,BA=2,设AP=x,则BP=4x,BP2=BA2+PA2,(4x)2=x2+22,解得:x=,AP=;点A落在矩形对角线AC上,如图2,根据折叠的性质可知DPAC,DAPABC,AP=故答案为或16、或【解析】联立方程可得,设,从而得出的图象在上与x轴只有一个交点,当时,求出此时m的值;当时,要使在之间有且只有一个公共点,则当x=-2时和x=2时y的值异号,从而求出m的取值范围;【详解】联

20、立可得:,令,抛物线与直线在之间有且只有一个公共点,即的图象在上与x轴只有一个交点,当时,即解得:,当时,当时,满足题意,当时,令,令,令代入解得:,此方程的另外一个根为:,故也满足题意,故的取值范围为:或故答案为: 或.【点睛】此题考查的是根据二次函数与一次函数的交点问题,求函数中参数的取值范围,掌握把函数的交点问题转化为一元二次方程解的问题是解决此题的关键17、2【解析】延长AC交x轴于B根据光的反射原理,点B、B关于y轴对称,CB=CB路径长就是AB的长度结合A点坐标,运用勾股定理求解【详解】解:如图所示,延长AC交x轴于B则点B、B关于y轴对称,CB=CB作ADx轴于D点则AD=3,D

21、B=3+1=1由勾股定理AB=2AC+CB = AC+CB= AB=2即光线从点A到点B经过的路径长为2考点:解直角三角形的应用点评:本题考查了直角三角形的有关知识,同时渗透光学中反射原理,构造直角三角形是解决本题关键18、5a+4b3c【解析】直接利用数轴结合二次根式、绝对值的性质化简得出答案【详解】由数轴可得:a+c0,b-c0,a-b0,故原式=-2(a+c)+b-c-3(a-b)=-2a-2c+b-c-3a+3b=-5a+4b-3c故答案为-5a+4b-3c【点睛】此题主要考查了二次根式以及绝对值的性质,正确化简是解题关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证

22、明过程或演算步骤19、(1)50;(2)详见解析;(3)36;(4)全校2000名学生共捐6280册书【解析】(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数;(2)根据条形统计图求出捐4本的人数为,再画出图形即可;(3)用360乘以所捐图书是6本的人数所占比例可得;(4)先求出九(1)班所捐图书的平均数,再乘以全校总人数2000即可【详解】(1)捐 2 本的人数是 15 人,占 30%,该班学生人数为 1530%50 人;(2)根据条形统计图可得:捐 4 本的人数为:50(10+15+7+5)13;补图如下;(3)九(1)班全体同学所捐图书是 6 本的人数在扇形统计图中所对应扇

23、形的圆心角为 36036(4)九(1)班所捐图书的平均数是;(110+215+413+57+65)50,全校 2000 名学生共捐 20006280(本),答:全校 2000 名学生共捐 6280 册书【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数20、(1)证明见解析;(2)结论:四边形ACDF是矩形理由见解析.【解析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形根据对角线相等的平行四边形是矩形判断即可;【详解】(1)证明:四边形ABCD

24、是平行四边形,BECD,AB=CD,AFC=DCG,GA=GD,AGF=CGD,AGFDGC,AF=CD,AB=CF(2)解:结论:四边形ACDF是矩形理由:AF=CD,AFCD,四边形ACDF是平行四边形,四边形ABCD是平行四边形,BAD=BCD=120,FAG=60,AB=AG=AF,AFG是等边三角形,AG=GF,AGFDGC,FG=CG,AG=GD,AD=CF,四边形ACDF是矩形【点睛】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.21、(1);(2)(9t);(3)S =t2+t;S=t2+1S=(9t)2;(3

25、)3或或4或【解析】(1)根据题意点R与点B重合时t+t=3,即可求出t的值;(2)根据题意运用t表示出PQ即可;(3)当点R落在ABCD的外部时可得出t的取值范围,再根据等量关系列出函数关系式;(3)根据等腰三角形的性质即可得出结论.【详解】解:(1)将线段PQ绕点P顺时针旋转90,得到线段PR,PQ=PR,QPR=90,QPR为等腰直角三角形当运动时间为t秒时,AP=t,PQ=PQ=APtanA=t点R与点B重合,AP+PR=t+t=AB=3,解得:t=(2)当点P在BC边上时,3t9,CP=9t,tanA=,tanC=,sinC=,PQ=CPsinC=(9t)(3)如图1中,当t3时,重

26、叠部分是四边形PQKB作KMAR于MKBRQAR, =, =,KM=(t3)=t,S=SPQRSKBR=(t)2(t3)(t)=t2+t如图2中,当3t3时,重叠部分是四边形PQKBS=SPQRSKBR=33tt=t2+1如图3中,当3t9时,重叠部分是PQKS=SPQC=(9t)(9t)=(9t)2(3)如图3中,当DC=DP1=3时,易知AP1=3,t=3当DC=DP2时,CP2=2CD,BP2=,t=3+当CD=CP3时,t=4当CP3=DP3时,CP3=2,t=9=综上所述,满足条件的t的值为3或或4或【点睛】本题考查四边形综合题、动点问题、平行四边形的性质、多边形的面积、等腰三角形的

27、判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题,学会利用参数构建方程解决问题,属于中考压轴题22、(1)(1,4a);(2)y=x2+2x+3;M(,)、N(,);点Q的坐标为(1,4+2)或(1,42)【解析】分析: (1)将二次函数的解析式进行配方即可得到顶点D的坐标(2)以AD为直径的圆经过点C,即点C在以AD为直径的圆的圆周上,依据圆周角定理不难得出ACD是个直角三角形,且ACD90,A点坐标可得,而C、D的坐标可由a表达出来,在得出AC、CD、AD的长度表达式后,依据勾股定理列等式即可求出a的值将OBE绕平面内某一点旋转180得到PMN,说明了PM正好和x轴平行,且PMO

28、B1,所以求M、N的坐标关键是求出点M的坐标;首先根据的函数解析式设出M点的坐标,然后根据题干条件:BF2MF作为等量关系进行解答即可设Q与直线CD的切点为G,连接QG,由C、D两点的坐标不难判断出CDQ45,那么QGD为等腰直角三角形,即QD 2QG 2QB ,设出点Q的坐标,然后用Q点纵坐标表达出QD、QB的长,根据上面的等式列方程即可求出点Q的坐标详解:(1)y=ax22ax3a=a(x1)24a,D(1,4a)(2)以AD为直径的圆经过点C,ACD为直角三角形,且ACD=90;由y=ax22ax3a=a(x3)(x+1)知,A(3,0)、B(1,0)、C(0,3a),则:AC2=9a2

29、+9、CD2=a2+1、AD2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a0,得:a=1,a=1,抛物线的解析式:y=x2+2x+3,D(1,4)将OBE绕平面内某一点旋转180得到PMN,PMx轴,且PM=OB=1;设M(x,x2+2x+3),则OF=x,MF=x2+2x+3,BF=OF+OB=x+1;BF=2MF,x+1=2(x2+2x+3),化简,得:2x23x5=0解得:x1=1(舍去)、x2=.M(,)、N(,)设Q与直线CD的切点为G,连接QG,过C作CHQD于H,如下图:C(0,3)、D(1,4),CH=DH

30、=1,即CHD是等腰直角三角形,QGD也是等腰直角三角形,即:QD2=2QG2;设Q(1,b),则QD=4b,QG2=QB2=b2+4;得:(4b)2=2(b2+4),化简,得:b2+8b8=0,解得:b=42;即点Q的坐标为(1,)或(1,)点睛: 此题主要考查了二次函数解析式的确定、旋转图形的性质、圆周角定理以及直线和圆的位置关系等重要知识点;后两个小题较难,最后一题中,通过构建等腰直角三角形找出QD和Q半径间的数量关系是解题题目的关键23、(1)见解析;(2)x11,x22【解析】(1)根据根的判别式列出关于m的不等式,求解可得;(2)取m2,代入原方程,然后解方程即可【详解】解:(1)

31、根据题意,(m1)24(2m2)m26m12(m2)24,(m2)241,方程总有两个不相等的实数根;(2)当m2时,由原方程得:x24x21整理,得(x1)(x2)1,解得x11,x22【点睛】本题主要考查根的判别式与韦达定理,一元二次方程ax2bxc1(a1)的根与b24ac有如下关系:当1时,方程有两个不相等的两个实数根;当1时,方程有两个相等的两个实数根;当1时,方程无实数根24、(1)35元/盒;(2)20%【解析】试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,

32、即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价单价求出2014年的购进数量,再根据2014年的销售利润(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解答:2014年这种礼盒的进价是35元/盒(2)设年增长率为m,2014年的销售数量为350035=100(盒)根据题意得:(6035)100(1+a)2=(6035+11)100,解得:a=0.2=20%或a=2

33、.2(不合题意,舍去)答:年增长率为20%考点:一元二次方程的应用;分式方程的应用;增长率问题25、(1)25件;(2)见解析;(3)B班的获奖率高;(4).【解析】试题分析:(1)直接利用扇形统计图中百分数,进而求出B班参赛作品数量;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量;(3)分别求出各班的获奖百分率,进而求出答案;(4)利用树状统计图得出所有符合题意的答案进而求出其概率试题解析:(1)由题意可得:100(135%20%20%)=25(件),答:B班参赛作品有25件;(2)C班提供的参赛作品的获奖率为50%,C班的参赛作品的获奖数量为:10020%50%

34、=10(件),如图所示:;(3)A班的获奖率为:100%=40%,B班的获奖率为:100%=44%,C班的获奖率为:=50%;D班的获奖率为:100%=40%,故C班的获奖率高;(4)如图所示:,故一共有12种情况,符合题意的有2种情况,则从中一次随机抽出两张卡片,求抽到A、B两班的概率为:=考点:1列表法与树状图法;2扇形统计图;3条形统计图26、x+y,【解析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题试题解析:原式= =x+y,当x=,y=2时,原式=2+2=27、(1)DD=1,AF= 4;(2);(1)【解析】(1)如图中,矩形ABCD绕点C

35、按顺时针方向旋转角,得到矩形ABCD,只要证明CDD是等边三角形即可解决问题;如图中,连接CF,在RtCDF中,求出FD即可解决问题;(2)由ADFADC,可推出DF的长,同理可得CDECBA,可求出DE的长,即可解决问题;(1)如图中,作FGCB于G,由SACF=ACCF=AFCD,把问题转化为求AFCD,只要证明ACF=90,证明CADFAC,即可解决问题;【详解】解:(1)如图中,矩形ABCD绕点C按顺时针方向旋转角,得到矩形ABCD,AD=AD=BC=BC=4,CD=CD=AB=AB=1ADC=ADC=90=60,DCD=60,CDD是等边三角形,DD=CD=1如图中,连接CFCD=CD,CF=CF,CDF=CDF=90,CDFCDF,DCF=DCF=DCD=10在RtCDF中,tanDCF=,DF=,AF=ADDF=4(2)如图中,在RtACD中,D=90,AC2=AD2+CD2,AC=5,AD=2DAF=CAD,ADF=D=90,ADFADC,DF=同理可得CDECBA,ED=,EF=ED+DF=(1)如图中,作FGCB于G四边形ABCD是矩形,GF=CD=CD=1SCEF=EFDC=CEFG,CE=EF,AE=EF,AE=EF=CE,ACF=90ADC=ACF,CAD=FAC,CADFAC,AC2=ADAF,AF=SACF=ACCF=AFCD,ACCF=AFCD=

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 初中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁