《2022-2023学年广西贵港市覃塘区重点名校十校联考最后数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年广西贵港市覃塘区重点名校十校联考最后数学试题含解析.doc(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1已知关于x的方程恰有一个实根,则满足条件的实数a的值的个数为()A1B2C3D42如图,将ABE向右平移2cm得到DCF,如果ABE的周长是16cm,那么四边形ABFD的周长是( ) A16cmB18cmC20cmD21cm3下列生态环保标志中,
2、是中心对称图形的是()A B C D4已知函数,则使y=k成立的x值恰好有三个,则k的值为( )A0B1C2D35一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积()A65B90C25D856已知二次函数y=(x+m)2n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是( )ABCD7若关于,的二元一次方程组的解也是二元一次方程的解,则的值为ABCD8如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是()A(2017,0)B(2
3、017,)C(2018,)D(2018,0)9如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A、B.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )A B C D 10一块等边三角形的木板,边长为1,现将木板沿水平线翻滚(如图),那么B点从开始至结束所走过的路径长度为()ABC4D2+二、填空题(本大题共6个小题,每小题3分,共18分)11已知(x-ay)(x+ay),那么a=_12如图所示,在菱形ABCD中,AB=4,BAD=120,AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、
4、F不与B、C、D重合当点E、F在BC、CD上滑动时,则CEF的面积最大值是_13如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_14比较大小:4 (填入“”或“”号)15不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_16算术平方根等于本身的实数是_.三、解答题(共8题,共72分)17(8分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2)
5、,直线交AB,BC分别于点M,N,反比例函数的图象经过点M,N(1)求反比例函数的解析式;(2)若点P在y轴上,且OPM的面积与四边形BMON的面积相等,求点P的坐标18(8分)如图(1),已知点G在正方形ABCD的对角线AC上,GEBC,垂足为点E,GFCD,垂足为点F(1)证明与推断:求证:四边形CEGF是正方形;推断:的值为 :(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转角(045),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H若AG=6,GH=
6、2,则BC= 19(8分)某校诗词知识竞赛培训活动中,在相同条件下对甲、乙两名学生进行了10次测验,他们的10次成绩如下(单位:分):整理、分析过程如下,请补充完整(1)按如下分数段整理、描述这两组数据:成绩x学生70x7475x7980x8485x8990x9495x100甲_乙114211(2)两组数据的极差、平均数、中位数、众数、方差如下表所示:学生极差平均数中位数众数方差甲_83.7_8613.21乙2483.782_46.21(3)若从甲、乙两人中选择一人参加知识竞赛,你会选_(填“甲”或“乙),理由为_20(8分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调
7、查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=2x+1设这种产品每天的销售利润为W元(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?21(8分)已知:如图,梯形ABCD中,ADBC,DEAB,与对角线交于点,且FG=EF.(1)求证:四边形是菱形;(2)联结AE,又知ACED,求证: .22(10分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(t,y1)和(t,y2)(其中t为常数且t0),将xt的部分沿直线y
8、y1翻折,翻折后的图象记为G1;将xt的部分沿直线yy2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G例如:如图,当t1时,原函数yx,图象G所对应的函数关系式为y(1)当t时,原函数为yx+1,图象G与坐标轴的交点坐标是 (2)当t时,原函数为yx22x图象G所对应的函数值y随x的增大而减小时,x的取值范围是 图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由(3)对应函数yx22nx+n23(n为常数)n1时,若图象G与直线y2恰好有两个交点,求t的取值范围当t2时,若图象G在n22xn21上的函数值y随x的增大而减小,直接写出n的取值
9、范围23(12分)阅读材料,解答问题材料:“小聪设计的一个电子游戏是:一电子跳蚤从这P1(3,9)开始,按点的横坐标依次增加1的规律,在抛物线yx2上向右跳动,得到点P2、P3、P4、P5(如图1所示)过P1、P2、P3分别作P1H1、P2H2、P3H3垂直于x轴,垂足为H1、H2、H3,则SP1P2P3S梯形P1H1H3P3S梯形P1H1H2P2S梯形P2H2H3P3(9+1)2(9+4)1(4+1)1,即P1P2P3的面积为1”问题:(1)求四边形P1P2P3P4和P2P3P4P5的面积(要求:写出其中一个四边形面积的求解过程,另一个直接写出答案);(2)猜想四边形Pn1PnPn+1Pn+
10、2的面积,并说明理由(利用图2);(3)若将抛物线yx2改为抛物线yx2+bx+c,其它条件不变,猜想四边形Pn1PnPn+1Pn+2的面积(直接写出答案)24解方程组:参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1由于原方程只有一个实数根,因此,方程的根有两种情况:(1)方程有两个相等的实数根,此二等根使x(x-2)1;(2)方程有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)1针对每一种情况,分别求出a的值及对应的原方程的根【详解】去分母,将原方程两边同乘x(x2),整理得2x23x
11、+(3a)=1方程的根的情况有两种:(1)方程有两个相等的实数根,即=932(3a)=1解得a=当a=时,解方程2x23x+(+3)=1,得x1=x2=(2)方程有两个不等的实数根,而其中一根使原方程分母为零,即方程有一个根为1或2(i)当x=1时,代入式得3a=1,即a=3当a=3时,解方程2x23x=1,x(2x3)=1,x1=1或x2=1.4而x1=1是增根,即这时方程的另一个根是x=1.4它不使分母为零,确是原方程的唯一根(ii)当x=2时,代入式,得2323+(3a)=1,即a=5当a=5时,解方程2x23x2=1,x1=2,x2= x1是增根,故x=为方程的唯一实根;因此,若原分式
12、方程只有一个实数根时,所求的a的值分别是,3,5共3个故选C【点睛】考查了分式方程的解法及增根问题由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键2、C【解析】试题分析:已知,ABE向右平移2cm得到DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm故答案选C考点:平移的性质.3、B【解析】试题分析:A、不是中心对称图形,故本选项错误;B
13、、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误故选B【考点】中心对称图形4、D【解析】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k成立的x值恰好有三个.故选:D.5、B【解析】根据三视图可判断该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,再利用勾股定理计算出母线长,然后求底面积与侧面积的和即可【详解】由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长=13,所以圆锥的表面积=52+2513=90故选B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧
14、长等于圆锥底面的周长,扇形的半径等于圆锥的母线长也考查了三视图6、C【解析】试题解析:观察二次函数图象可知: 一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限.故选D.7、B【解析】将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值【详解】解:,得:,即,将代入得:,即,将,代入得:,解得:故选:【点睛】此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值8、C【解析】本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为20176=336余1,点F滚动
15、1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题【详解】解:正六边形ABCDEF一共有6条边,即6次一循环;20176=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,点F滚动2107次时的纵坐标与相同,横坐标的次数加1,点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,点F滚动2107次时的坐标为(2018,),故选C【点睛】本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型9、D【解析】分析:过A作
16、ACx轴,交BB的延长线于点C,过A作ADx轴,交BB的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA=3,然后根据平移规律即可求解详解:过A作ACx轴,交BB的延长线于点C,过A作ADx轴,交BB的于点D,则C(-1,m),AC=-1-(-1)=3,曲线段AB扫过的面积为9(图中的阴影部分),矩形ACD A的面积等于9,ACAA=3AA=9,AA=3,新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1故选D点睛:此题主要考查了二
17、次函数图象变换以及矩形的面积求法等知识,根据已知得出AA的长度是解题关键10、B【解析】根据题目的条件和图形可以判断点B分别以C和A为圆心CB和AB为半径旋转120,并且所走过的两路径相等,求出一个乘以2即可得到【详解】如图:BC=AB=AC=1,BCB=120,B点从开始至结束所走过的路径长度为2弧BB=2.故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、4【解析】根据平方差公式展开左边即可得出答案.【详解】(x-ay)(x+ay)=又(x-ay)(x+ay)解得:a=4故答案为:4.【点睛】本题考查的平方差公式:.12、 【解析】解:如图,连接AC,四边形ABCD为菱形,B
18、AD=120,1+EAC=60,3+EAC=60,1=3,BAD=120,ABC=60,ABC和ACD为等边三角形,4=60,AC=AB在ABE和ACF中,1=3,AC=AC,ABC=4,ABEACF(ASA),SABE=SACF,S四边形AECF=SAEC+SACF=SAEC+SABE=SABC,是定值,作AHBC于H点,则BH=2,S四边形AECF=SABC=BCAH=BC=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又SCEF=S四边形AECFSAEF,则此时CEF的面积就会最大
19、,SCEF=S四边形AECFSAEF= =故答案为:.点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据ABEACF,得出四边形AECF的面积是定值是解题的关键13、或或1【解析】如图所示:当AP=AE=1时,BAD=90,AEP是等腰直角三角形,底边PE=AE=;当PE=AE=1时,BE=ABAE=81=3,B=90,PB=4,底边AP=;当PA=PE时,底边AE=1;综上所述:等腰三角形AEP的对边长为或或1;故答案为或或114、【解析】试题解析:4考点:实数的大小比较【详解】请在此输入详解!15、 【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件
20、的情况数目;二者的比值即其发生的概率.详解:由于共有8个球,其中篮球有5个,则从袋子中摸出一个球,摸出蓝球的概率是 ,故答案是 点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件 A出现m种结果,那么事件A的概率P(A)= 16、0或1【解析】根据负数没有算术平方根,一个正数的算术平方根只有一个,1和0的算术平方根等于本身,即可得出答案解:1和0的算术平方根等于本身.故答案为1和0“点睛”本题考查了算术平方根的知识,注意掌握1和0的算术平方根等于本身三、解答题(共8题,共72分)17、(1);(2)点P的坐标是(0,4)或(0,4).【解析】(1)求出O
21、A=BC=2,将y=2代入求出x=2,得出M的坐标,把M的坐标代入反比例函数的解析式即可求出答案.(2)求出四边形BMON的面积,求出OP的值,即可求出P的坐标.【详解】(1)B(4,2),四边形OABC是矩形,OA=BC=2.将y=2代入3得:x=2,M(2,2).把M的坐标代入得:k=4,反比例函数的解析式是;(2).OPM的面积与四边形BMON的面积相等,.AM=2,OP=4.点P的坐标是(0,4)或(0,4).18、(1)四边形CEGF是正方形;(2)线段AG与BE之间的数量关系为AG=BE;(3)3【解析】(1)由、结合可得四边形CEGF是矩形,再由即可得证;由正方形性质知、,据此可
22、得、,利用平行线分线段成比例定理可得;(2)连接CG,只需证即可得;(3)证得,设,知,由得、,由可得a的值【详解】(1)四边形ABCD是正方形,BCD=90,BCA=45,GEBC、GFCD,CEG=CFG=ECF=90,四边形CEGF是矩形,CGE=ECG=45,EG=EC,四边形CEGF是正方形;由知四边形CEGF是正方形,CEG=B=90,ECG=45,GEAB,故答案为;(2)连接CG,由旋转性质知BCE=ACG=,在RtCEG和RtCBA中,=、=,=,ACGBCE,线段AG与BE之间的数量关系为AG=BE;(3)CEF=45,点B、E、F三点共线,BEC=135,ACGBCE,A
23、GC=BEC=135,AGH=CAH=45,CHA=AHG,AHGCHA,设BC=CD=AD=a,则AC=a,则由得,AH=a,则DH=ADAH=a,CH=a,由得,解得:a=3,即BC=3,故答案为3【点睛】本题考查了正方形的性质与判定,相似三角形的判定与性质等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握正方形的判定与性质、相似三角形的判定与性质是解题的关键.19、(1)0,1,4,5,0,0;(2)14,84.5,1;(3)甲,理由见解析【解析】(1)根据折线统计图数字进行填表即可; (2)根据稽查,中位数,众数的计算方法,求得甲成绩的极差,中位数,乙成绩的极差,众数即可;(3)可
24、分别从平均数、方差、极差三方面进行比较【详解】(1)由图可知:甲的成绩为:75,84,89,82,86,1,86,83,85,86,70x74无,共0个;75x79之间有75,共1个;80x84之间有84,82,1,83,共4个;85x89之间有89,86,86,85,86,共5个;90x94之间和95x100无,共0个故答案为0;1;4;5;0;0;(2)由图可知:甲的最高分为89分,最低分为75分,极差为8975=14分;甲的成绩为从低到高排列为:75,1,82,83,84,85,86,86,86,89,中位数为(8485)84.5;乙的成绩为从低到高排列为:72,76,1,1,1,83,
25、87,89,91,96,1出现3次,乙成绩的众数为1故答案为14;84.5;1;(3)甲,理由:两人的平均数相同且甲的方差小于乙,说明甲成绩稳定;两人的平均数相同且甲的极差小于乙,说明甲成绩变化范围小或:乙,理由:在90x100的分数段中,乙的次数大于甲(答案不唯一,理由须支撑推断结论)故答案为:甲,两人的平均数相同且甲的方差小于乙,说明甲成绩稳定【点睛】此题考查折线统计图,统计表,平均数,中位数,众数,方差,极差,解题关键在于掌握运算法则以及会用这些知识来评价这组数据20、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.【解析】(1)直接利用每件
26、利润销量=总利润进而得出等式求出答案;(2)直接利用每件利润销量=总利润进而得出函数关系式,利用二次函数增减性求出答案【详解】(1)根据题意得:(x20)(2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x20)(2x+1)=2(x30)2+200,a=2,抛物线开口向下,当x30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元当x=28时,W最大=2(2830)2+200=192(元)销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【点睛】此题主要考查了一元
27、二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键21、 (1)见解析;(2)见解析【解析】分析:(1)由两组对边分别平行的四边形是平行四边形,得到是平行四边形再由平行线分线段成比例定理得到:, ,即可得到结论;(2)连接,与交于点由菱形的性质得到,进而得到 ,即有,得到,由相似三角形的性质即可得到结论详解:(1) ,四边形是平行四边形,同理 得:,四边形是菱形(2)连接,与交于点四边形是菱形,得 同理又是公共角,点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质灵活运用菱形的判定与性质是解题的关键22、(1)(2,0);(2)x1或x;图象G所对应的函数有最大值为
28、;(3);n或n【解析】(1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;(2)画出函数草图,求出翻转点和函数顶点的坐标,根据图象的增减性可求出y随x的增大而减小时,x的取值范围,根据图象很容易计算出函数最大值;(3)将n1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解
29、即可.【详解】(1)当x时,y,当x时,翻折后函数的表达式为:yx+b,将点(,)坐标代入上式并解得:翻折后函数的表达式为:yx+2,当y0时,x2,即函数与x轴交点坐标为:(2,0);同理沿x翻折后当时函数的表达式为:yx,函数与x轴交点坐标为:(0,0),因为所以舍去.故答案为:(2,0);(2)当t时,由函数为yx22x构建的新函数G的图象,如下图所示:点A、B分别是t、t的两个翻折点,点C是抛物线原顶点,则点A、B、C的横坐标分别为、1、,函数值y随x的增大而减小时,x1或x,故答案为:x1或x;函数在点A处取得最大值,x,y()22(),答:图象G所对应的函数有最大值为;(3)n1时
30、,yx2+2x2,参考(2)中的图象知:当y2时,yx2+2x22,解得:x1,若图象G与直线y2恰好有两个交点,则t1且-t,所以;函数的对称轴为:xn,令yx22nx+n230,则xn,当t2时,点A、B、C的横坐标分别为:2,n,2,当xn在y轴左侧时,(n0),此时原函数与x轴的交点坐标(n+,0)在x2的左侧,如下图所示,则函数在AB段和点C右侧,故:2xn,即:在2n22xn21n,解得:n;当xn在y轴右侧时,(n0),同理可得:n;综上:n或n【点睛】在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终
31、的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)需注意图象G与直线y2恰好有两个交点,多于2个交点的要排除;根据草图和增减性,列出不等式,求解即可.23、 (1)2,2;(2)2,理由见解析;(3)2【解析】(1)作P5H5垂直于x轴,垂足为H5,把四边形P1P2P3P2和四边形P2P3P2P5的转化为SP1P2P3P2SOP1H1SOP3H3S梯形P2H2H3P3S梯形P1H1H2P2和SP2P3P2P5S梯形P5H5H2P2SP5H5OSOH3P3S梯形P2H2H3P3来求解;(2)(3)由图可知,Pn1、Pn、Pn+1、Pn+2的横坐标为n5,n2,n3,n2
32、,代入二次函数解析式,可得Pn1、Pn、Pn+1、Pn+2的纵坐标为(n5)2,(n2)2,(n3)2,(n2)2,将四边形面积转化为S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn2来解答【详解】(1)作P5H5垂直于x轴,垂足为H5,由图可知SP1P2P3P2SOP1H1SOP3H3S梯形P2H2H3P3S梯形P1H1H2P22,SP2P3P2P5S梯形P5H5H2P2SP5H5OSOH3P3S梯形P2H2H3P32;(2)作Pn1Hn1、PnHn、Pn+1Hn+1、Pn+2Hn+2垂直
33、于x轴,垂足为Hn1、Hn、Hn+1、Hn+2,由图可知Pn1、Pn、Pn+1、Pn+2的横坐标为n5,n2,n3,n2,代入二次函数解析式,可得Pn1、Pn、Pn+1、Pn+2的纵坐标为(n5)2,(n2)2,(n3)2,(n2)2,四边形Pn1PnPn+1Pn+2的面积为S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn22;(3)S四边形Pn1PnPn+1Pn+2S梯形Pn5Hn5Hn2Pn2S梯形Pn5Hn5Hn2Pn2S梯形Pn2Hn2Hn3Pn3S梯形Pn3Hn3Hn2Pn2=-2
34、【点睛】本题是一道二次函数的综合题,考查了根据函数坐标特点求图形面积的知识,解答时要注意,前一小题为后面的题提供思路,由于计算量极大,要仔细计算,以免出错,24、 【解析】设=a, =b,则原方程组化为,求出方程组的解,再求出原方程组的解即可【详解】设=a, =b,则原方程组化为:,+得:4a=4,解得:a=1,把a=1代入得:1+b=3,解得:b=2,即,解得:,经检验是原方程组的解,所以原方程组的解是【点睛】此题考查利用换元法解方程组,注意要根据方程组的特点灵活选用合适的方法. 解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法.换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理.