《2022-2023学年福建省龙岩市永定区重点名校中考数学模拟预测题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省龙岩市永定区重点名校中考数学模拟预测题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回
2、。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示,在折纸活动中,小明制作了一张ABC纸片,点D,E分别在边AB,AC上,将ABC沿着DE折叠压平,A与A重合,若A=70,则1+2=()A70B110C130D1402为丰富学生课外活动,某校积极开展社团活动,开设的体育社团有:A:篮球,B:排球,C:足球,D:羽毛球,E:乒乓球学生可根据自己的爱好选择一项,李老师对八年级同学选择体育社团情况进行调查统计,制成了两幅不完整的统计图(如图),则以下结论不正确的是()A选科目E的有5人B选科目A的扇形圆心角是120C选科目D的人数占体
3、育社团人数的D据此估计全校1000名八年级同学,选择科目B的有140人3图(1)是一个长为2m,宽为2n(mn)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A2mnB(m+n)2C(m-n)2Dm2-n24如图,二次函数yax2bxc(a0)的图象经过点A,B,C现有下面四个推断:抛物线开口向下;当x=2时,y取最大值;当m ax2bxc时,x的取值范围是4x0;其中推断正确的是 ( )ABCD5某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()
4、动时间(小时)33.544.5人数1121A中位数是4,平均数是3.75B众数是4,平均数是3.75C中位数是4,平均数是3.8D众数是2,平均数是3.86若一组数据2,3,5,7的众数为7,则这组数据的中位数为( )A2B3C5D77天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A-=20B-=20C-=20D8已知正多边形的一个外角为36,则该正多边形的边数为( ).A12B10C8D69一、单选题如图中的小正方形边长都相等,若MNPMEQ,则点Q可能是
5、图中的()A点AB点BC点CD点D10要使式子有意义,的取值范围是( )AB且C. 或D 且11若关于x的一元二次方程(k1)x24x10有两个不相等的实数根,则k的取值范围是( )Ak5Bk512设x1,x2是一元二次方程x22x3=0的两根,则x12+x22=( )A6 B8 C10 D12二、填空题:(本大题共6个小题,每小题4分,共24分)13下面是用棋子摆成的“上”字:如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_枚棋子14下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第根图形需要_根火柴.15已知且,则=_16如
6、图,已知直线与轴、轴相交于、两点,与的图象相交于、两点,连接、.给出下列结论:;不等式的解集是或.其中正确结论的序号是_17如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则1+2=_度18 “五一劳动节”,王老师将全班分成六个小组开展社会实践活动,活动结束后,随机抽取一个小组进行汇报展示第五组被抽到的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,已知ABC中,AB=BC=5,tanABC=求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值20(6分)如图,已知点A,B,C在半径为4的O上,过点C作O的切线交OA的延长
7、线于点D()若ABC=29,求D的大小;()若D=30,BAO=15,作CEAB于点E,求:BE的长;四边形ABCD的面积21(6分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1如图2,正方形ABCD顶点处各有一个圈跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;设游戏者从圈A
8、起跳(1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;(2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?22(8分)已知:如图,在半径为2的扇形中,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结(1)若C是半径OB中点,求的正弦值;(2)若E是弧AB的中点,求证:;(3)联结CE,当DCE是以CD为腰的等腰三角形时,求CD的长23(8分)山地自行车越来越受中学生的喜爱一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额
9、是27000元求二月份每辆车售价是多少元?为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?24(10分)在平面直角坐标系中,ABC的三个顶点坐标分别为A(2,4),B(3,2),C(6,3)画出ABC关于轴对称的A1B1C1;以M点为位似中心,在网格中画出A1B1C1的位似图形A2B2C2,使A2B2C2与A1B1C1的相似比为2:125(10分)在RtABC中,ACB90,以点A为圆心,AC为半径,作A交AB于点D,交CA的延长线于点E,过点E作AB的平行线EF交A于点F,连接AF、BF、DF(1)求证:BF是A的切线(2)当
10、CAB等于多少度时,四边形ADFE为菱形?请给予证明26(12分)如图,AB是O的直径,点C是O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分ACB,交AB点F,连接BE(1)求证:AC平分DAB;(2)求证:PCPF;(3)若tanABC,AB14,求线段PC的长27(12分)“母亲节”前夕,某商店根据市场调查,用3000元购进第一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花已知第二批所购花的盒数是第一批所购花盒数的2倍,且每盒花的进价比第一批的进价少5元求第一批盒装花每盒的进价是多少元?参考答案一、选择题(本大题共12个小题,每
11、小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】四边形ADAE的内角和为(4-2)180=360,而由折叠可知AED=AED,ADE=ADE,A=A,AED+AED+ADE+ADE=360-A-A=360-270=220,1+2=1802-(AED+AED+ADE+ADE)=1402、B【解析】A选项先求出调查的学生人数,再求选科目E的人数来判定,B选项先求出A科目人数,再利用360判定即可,C选项中由D的人数及总人数即可判定,D选项利用总人数乘以样本中B人数所占比例即可判定【详解】解:调查的学生人数为:1224%=50(人),选科目E的人数为:5010%=
12、5(人),故A选项正确,选科目A的人数为50(7+12+10+5)=16人,选科目A的扇形圆心角是360=115.2,故B选项错误,选科目D的人数为10,总人数为50人,所以选科目D的人数占体育社团人数的,故C选项正确,估计全校1000名八年级同学,选择科目B的有1000=140人,故D选项正确;故选B【点睛】本题主要考查了条形统计图及扇形统计图,解题的关键是读懂统计图,从统计图中找到准确信息3、C【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1又原矩形的面积为4mn,中间空的部分的面积=(m+n)1-4mn=(m-n)1故选C4、B【解析】结合函数图象,利用二次
13、函数的对称性,恰当使用排除法,以及根据函数图象与不等式的关系可以得出正确答案【详解】解:由图象可知,抛物线开口向下,所以正确;若当x=-2时,y取最大值,则由于点A和点B到x=-2的距离相等,这两点的纵坐标应该相等,但是图中点A和点B的纵坐标显然不相等,所以错误,从而排除掉A和D;剩下的选项中都有,所以是正确的;易知直线y=kx+c(k0)经过点A,C,当kx+cax2+bx+c时,x的取值范围是x-4或x0,从而错误故选:B【点睛】本题考查二次函数的图象,二次函数的对称性,以及二次函数与一元二次方程,二次函数与不等式的关系,属于较复杂的二次函数综合选择题5、C【解析】试题解析:这组数据中4出
14、现的次数最多,众数为4,共有5个人,第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.1故选C6、C【解析】试题解析:这组数据的众数为7,x=7,则这组数据按照从小到大的顺序排列为:2,3,1,7,7,中位数为:1故选C考点:众数;中位数.7、C【解析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1【详解】原价买可买瓶,经过还价,可买瓶方程可表示为:=1故选C【点睛】考查了由实际问题抽象出分式方程列方程解应用题的关键步骤在于找相等关系本题要注意讨价前后商品的单价的变化8、B【解析】利用多边形的外角和是360,正多边形的每个外角都是36,即可求
15、出答案【详解】解:3603610,所以这个正多边形是正十边形故选:B【点睛】本题主要考查了多边形的外角和定理是需要识记的内容9、D【解析】根据全等三角形的性质和已知图形得出即可【详解】解:MNPMEQ,点Q应是图中的D点,如图,故选:D【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等10、D【解析】根据二次根式和分式有意义的条件计算即可.【详解】解: 有意义,a+20且a0,解得a-2且a0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不
16、为0.11、B【解析】试题解析:关于x的一元二次方程方程有两个不相等的实数根,即,解得:k5且k1故选B12、C【解析】试题分析:根据根与系数的关系得到x1+x2=2,x1x2=3,再变形x12+x22得到(x1+x2)22x1x2,然后利用代入计算即可解:一元二次方程x22x3=0的两根是x1、x2,x1+x2=2,x1x2=3,x12+x22=(x1+x2)22x1x2=222(3)=1故选C二、填空题:(本大题共6个小题,每小题4分,共24分)13、4n+2【解析】第1个有:6=41+2;第2个有:10=42+2;第3个有:14=43+2;第1个有: 4n+2;故答案为4n+214、【解
17、析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+26个火柴组成,组成n个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.15、【解析】分析:根据相似三角形的面积比等于相似比的平方求解即可详解:ABCABC,SABC:SABC=AB2:AB2=1:2,AB:AB=1:点睛:本题的关键是理解相似三角形的面积比等于相似比的平方16、【解析】分析:根据一次函数和反比例函数的性质得到k1k20,故错误;把A(-2,m)
18、、B(1,n)代入y=中得到-2m=n故正确;把A(-2,m)、B(1,n)代入y=k1x+b得到y=-mx-m,求得P(-1,0),Q(0,-m),根据三角形的面积公式即可得到SAOP=SBOQ;故正确;根据图象得到不等式k1x+b的解集是x-2或0x1,故正确详解:由图象知,k10,k20,k1k20,故错误;把A(-2,m)、B(1,n)代入y=中得-2m=n,m+n=0,故正确;把A(-2,m)、B(1,n)代入y=k1x+b得,,-2m=n,y=-mx-m,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,P(-1,0),Q(0,-m),OP=1,OQ=m,SAOP=m,SBOQ=
19、m,SAOP=SBOQ;故正确;由图象知不等式k1x+b的解集是x-2或0x1,故正确;故答案为:点睛:本题考查了反比例函数与一次函数的交点,求两直线的交点坐标,三角形面积的计算,正确的理解题意是解题的关键17、270【解析】根据三角形的内角和与平角定义可求解【详解】解析:如图,根据题意可知5=90, 3+4=90, 1+2=180+180-(3+4)=360-90=270,故答案为:270度.【点睛】本题主要考查了三角形的内角和定理和内角与外角之间的关系要会熟练运用内角和定理求角的度数18、【解析】根据概率是所求情况数与总情况数之比,可得答案【详解】因为共有六个小组,所以第五组被抽到的概率是
20、,故答案为:【点睛】本题考查了概率的知识用到的知识点为:概率=所求情况数与总情况数之比三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)AC=;(2)【解析】【分析】(1)过A作AEBC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求【详解】(1)如图,过点A作AEBC,在RtABE中,tanABC=,AB=5,AE=3,BE=4,CE=BCBE=54=1,在RtAEC中,根据勾股定理得:AC=;(2)DF垂直
21、平分BC,BD=CD,BF=CF=,tanDBF=,DF=,在RtBFD中,根据勾股定理得:BD=,AD=5=,则【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.20、(1)D=32;(2)BE;【解析】()连接OC, CD为切线,根据切线的性质可得OCD=90,根据圆周角定理可得AOC=2ABC=292=58,根据直角三角形的性质可得D的大小.()根据D=30,得到DOC=60,根据BAO=15,可以得出AOB=150,进而证明OBC为等腰直角三角形,根据等腰直角三角形的性质得出根据圆周角定理得出根据含角的直角三角形的性质即可求出BE的
22、长;根据四边形ABCD的面积=SOBC+SOCDSOAB进行计算即可.【详解】()连接OC,CD为切线,OCCD,OCD=90,AOC=2ABC=292=58,D=9058=32;()连接OB,在RtOCD中,D=30,DOC=60, BAO=15,OBA=15,AOB=150,OBC=15060=90,OBC为等腰直角三角形, 在RtCBE中, 作BHOA于H,如图,BOH=180AOB=30, 四边形ABCD的面积=SOBC+SOCDSOAB 【点睛】考查切线的性质,圆周角定理,等腰直角三角形的判定与性质,含角的等腰直角三角形的性质,三角形的面积公式等,题目比较典型,综合性比较强,难度适中
23、21、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样【解析】(1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;【详解】(1)共有1种等可能的结果,落回到圈A的只有1种情况,落回到圈A的概率P1=;(2)列表得: 1 2 3 11(1,1)(2,1)(3,1)(1,1)2(1,2)(2,2)(3,2)(1,2)3(1,3)(2,3)(3,3)(1,3)1(1,1)(2,1)(3,1)(1,1)共有16种等可能的结果,最后落回
24、到圈A的有(1,3),(2,2)(3,1),(1,1),最后落回到圈A的概率P2=,她与嘉嘉落回到圈A的可能性一样【点睛】此题考查了列表法或树状图法求概率注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数22、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或【解析】(2)先求出OCOB=2,设OD=x,得出CD=AD=OAOD=2x,根据勾股定理得:(2x)2x2=2求出x,即可得出结论;(2)先判断出,进而得出CBE=BCE,再判断出OBEEBC,即可得出结论;(3)分两种情况:当CD=CE时,判断出四边形ADCE是菱形,得出OCE=90在RtOCE中,OC2
25、=OE2CE2=4a2在RtCOD中,OC2=CD2OD2=a2(2a)2,建立方程求解即可;当CD=DE时,判断出DAE=DEA,再判断出OAE=OEA,进而得出DEA=OEA,即:点D和点O重合,即可得出结论【详解】(2)C是半径OB中点,OCOB=2DE是AC的垂直平分线,AD=CD设OD=x,CD=AD=OAOD=2x在RtOCD中,根据勾股定理得:(2x)2x2=2,x,CD,sinOCD;(2)如图2,连接AE,CEDE是AC垂直平分线,AE=CEE是弧AB的中点,AE=BE,BE=CE,CBE=BCE连接OE,OE=OB,OBE=OEB,CBE=BCE=OEBB=B,OBEEBC
26、,BE2=BOBC;(3)DCE是以CD为腰的等腰三角形,分两种情况讨论:当CD=CE时DE是AC的垂直平分线,AD=CD,AE=CE,AD=CD=CE=AE,四边形ADCE是菱形,CEAD,OCE=90,设菱形的边长为a,OD=OAAD=2a在RtOCE中,OC2=OE2CE2=4a2在RtCOD中,OC2=CD2OD2=a2(2a)2,4a2=a2(2a)2,a=22(舍)或a=;CD=;当CD=DE时DE是AC垂直平分线,AD=CD,AD=DE,DAE=DEA连接OE,OA=OE,OAE=OEA,DEA=OEA,点D和点O重合,此时,点C和点B重合,CD=2综上所述:当DCE是以CD为腰
27、的等腰三角形时,CD的长为2或【点睛】本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键23、(1)二月份每辆车售价是900元;(2)每辆山地自行车的进价是600元【解析】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据数量=总价单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y元,根据利润=售价进价,即可得出关于y的一元一次方程,解之即可得出结论【详解】(1)设二月份每辆车售价为x元,则一月份每辆车售价为(x+100)元,根据题意得:,解得:x=900,经检验
28、,x=900是原分式方程的解,答:二月份每辆车售价是900元;(2)设每辆山地自行车的进价为y元,根据题意得:900(110%)y=35%y,解得:y=600,答:每辆山地自行车的进价是600元【点睛】本题考查了分式方程的应用、一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.24、(1)详见解析;(2)详见解析【解析】试题分析:(1)直接利用关于x轴对称点的性质得出对应点位置,进而得出答案;(2)直接利用位似图形的性质得出对应点位置,进而得出答案;试题解析:(1)如图所示:A1B1C1,即为所求;(2)如图所示:A2B2C2,即为所求;考点:作图-位似变换;作图-轴对称变换25
29、、(1)证明见解析;(2)当CAB=60时,四边形ADFE为菱形;证明见解析;【解析】分析(1)首先利用平行线的性质得到FAB=CAB,然后利用SAS证得两三角形全等,得出对应角相等即可;(2)当CAB=60时,四边形ADFE为菱形,根据CAB=60,得到FAB=CAB=CAB=60,从而得到EF=AD=AE,利用邻边相等的平行四边形是菱形进行判断四边形ADFE是菱形详解:(1)证明:EFABFAB=EFA,CAB=EAE=AFEFA =EFAB=CABAC=AF,AB=ABABCABF AFB=ACB=90, BF是A的切线. (2)当CAB=60时,四边形ADFE为菱形.理由:EFABE=
30、CAB=60AE=AFAEF是等边三角形AE=EF,AE=ADEF=AD四边形ADFE是平行四边形AE=EF平行四边形ADFE为菱形.点睛:本题考查了菱形的判定、全等三角形的判定与性质及圆周角定理的知识,解题的关键是了解菱形的判定方法及全等三角形的判定方法,难度不大26、(1)(2)证明见解析;(3)1【解析】(1)由PD切O于点C,AD与过点C的切线垂直,易证得OCAD,继而证得AC平分DAB;(2)由条件可得CAO=PCB,结合条件可得PCF=PFC,即可证得PC=PF;(3)易证PACPCB,由相似三角形的性质可得到 ,又因为tanABC= ,所以可得=,进而可得到=,设PC=4k,PB
31、=3k,则在RtPOC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长【详解】(1)证明:PD切O于点C,OCPD,又ADPD,OCAD,ACO=DACOC=OA,ACO=CAO,DAC=CAO,即AC平分DAB;(2)证明:ADPD,DAC+ACD=90又AB为O的直径,ACB=90PCB+ACD=90,DAC=PCB又DAC=CAO,CAO=PCBCE平分ACB,ACF=BCF,CAO+ACF=PCB+BCF,PFC=PCF,PC=PF;(3)解:PAC=PCB,P=P,PACPCB,又tanABC=,设PC=4k,PB=3k,则在RtPOC中,PO=3k+7,OC=7,PC2+OC2=OP2,(4k)2+72=(3k+7)2,k=6 (k=0不合题意,舍去)PC=4k=46=1【点睛】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质27、30元【解析】试题分析:设第一批盒装花的进价是x元/盒,则第一批进的数量是:,第二批进的数量是:,再根据等量关系:第二批进的数量=第一批进的数量2可得方程解:设第一批盒装花的进价是x元/盒,则2=,解得 x=30经检验,x=30是原方程的根答:第一批盒装花每盒的进价是30元考点:分式方程的应用