2022-2023学年福建省龙岩市永定区重点名校中考二模数学试题含解析.doc

上传人:茅**** 文档编号:87069188 上传时间:2023-04-16 格式:DOC 页数:21 大小:812.50KB
返回 下载 相关 举报
2022-2023学年福建省龙岩市永定区重点名校中考二模数学试题含解析.doc_第1页
第1页 / 共21页
2022-2023学年福建省龙岩市永定区重点名校中考二模数学试题含解析.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《2022-2023学年福建省龙岩市永定区重点名校中考二模数学试题含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年福建省龙岩市永定区重点名校中考二模数学试题含解析.doc(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2023年中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列因式分解正确的是( )ABCD2在下面的四个几何体中,左视图与主视图不相同的几何体是()ABCD3如图,在RtABC中,ACB=90,AC=BC=1,将绕点A逆时针旋转30后得到RtADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )

2、ABC-D4如图,点P是菱形ABCD边上的一动点,它从点A出发沿在ABCD路径匀速运动到点D,设PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A B C D5轮船沿江从港顺流行驶到港,比从港返回港少用3小时,若船速为26千米/时,水速为2千米/时,求港和港相距多少千米. 设港和港相距千米. 根据题意,可列出的方程是( ).ABCD6如果m的倒数是1,那么m2018等于()A1B1C2018D20187在1、1、3、2这四个数中,最大的数是()A1B1C3D28下列计算正确的是()A5x2x=3xB(a+3)2=a2+9C(a3)2=a5Da2pap=a3p9如图,正方形A

3、BCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是ABCD10关于x的方程x23x+k0的一个根是2,则常数k的值为()A1B2C1D2二、填空题(本大题共6个小题,每小题3分,共18分)11如图,反比例函数y=的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角ABC,顶点C在第四象限,AC与x轴交于点P,连结BP,在点A运动过程中,当BP平分ABC时,点A的坐标为_12边长为6的正六边形外接圆半径是_13已知ab=2,ab=3,则a3b2a2b2+ab3的值为_14实数,3,0中的无理数是_15O的半

4、径为10cm,AB,CD是O的两条弦,且ABCD,AB=16cm,CD=12cm则AB与CD之间的距离是 cm16如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H,给出下列结论:DFPBPH;PD2=PHCD;,其中正确的是_(写出所有正确结论的序号)三、解答题(共8题,共72分)17(8分)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数 (x0)的图象交于点B(2,n),过点B作BCx轴于点C,点D(33n,1)是该反比例函数图象上一点求m的值;若DBC=ABC,求一次函数y=kx+b的表达式18(8

5、分)已知:如图,MNQ中,MQNQ(1)请你以MN为一边,在MN的同侧构造一个与MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图,在四边形ABCD中,B=D求证:CD=AB19(8分)某市扶贫办在精准扶贫工作中,组织30辆汽车装运花椒、核桃、甘蓝向外地销售按计划30辆车都要装运,每辆汽车只能装运同一种产品,且必须装满,根据下表提供的信息,解答以下问题:产品名称核桃花椒甘蓝每辆汽车运载量(吨)1064每吨土特产利润(万元)0.70.80.5若装运核桃的汽车为x辆,装运甘蓝的车辆数是装运核桃车辆数的2倍多1,假设30辆车装运的三种产品的总

6、利润为y万元(1)求y与x之间的函数关系式;(2)若装花椒的汽车不超过8辆,求总利润最大时,装运各种产品的车辆数及总利润最大值20(8分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?21(8分)如图,己知AB是的直径,C为圆上一点,D是的中点,于H,垂足为H,连交弦于E,交于F,联结.(1)求证:

7、.(2)若,求的长.22(10分)如图,在等边三角形ABC中,点D,E分别在BC, AB上,且ADE=60.求证:ADCDEB23(12分)小明随机调查了若干市民租用共享单车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如下统计图(A:0t10,B:10t20,C:20t30,D:t30),根据图中信息,解答下列问题:这项被调查的总人数是多少人?试求表示A组的扇形统计图的圆心角的度数,补全条形统计图;如果小明想从D组的甲、乙、丙、丁四人中随机选择两人了解平时租用共享单车情况,请用列表或画树状图的方法求出恰好选中甲的概率24关于x的一元二次方程x2(m1)x(2m3)1(1)求证:方程总

8、有两个不相等的实数根;(2)写出一个m的值,并求出此时方程的根参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论【详解】解:D选项中,多项式x2-x+2在实数范围内不能因式分解;选项B,A中的等式不成立;选项C中,2x2-2=2(x2-1)=2(x+1)(x-1),正确故选C【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法2、B【解析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、

9、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.3、A【解析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到RtADERtACB,于是S阴影部分=SADE+S扇形ABD-SABC=S扇形ABD【详解】ACB=90,AC=BC=1,AB=,S扇形ABD=,又RtABC绕A点逆时针旋转30后得到RtADE,RtADERtACB,S阴影部分=SADE+S扇形

10、ABDSABC=S扇形ABD=,故选A.【点睛】本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.4、B【解析】【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可【详解】分三种情况:当P在AB边上时,如图1,设菱形的高为h,y=APh,AP随x的增大而增大,h不变,y随x的增大而增大,故选项C不正确;当P在边BC上时,如图2,y=ADh,AD和h都不变,在这个过程中,y不变,故选项A不正确;当P在边CD上时,如图3,y=PDh,PD随x的增大而减小,h不变,y随x的增大而减小,

11、P点从点A出发沿ABCD路径匀速运动到点D,P在三条线段上运动的时间相同,故选项D不正确,故选B【点睛】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,运用分类讨论思想,分三段求出PAD的面积的表达式是解题的关键5、A【解析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系,据此列出方程即可【详解】解:设A港和B港相距x千米,可得方程:故选:A【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键顺水速度=水流速度+静

12、水速度,逆水速度=静水速度-水流速度6、A【解析】因为两个数相乘之积为1,则这两个数互为倒数, 如果m的倒数是1,则m=-1,然后再代入m2018计算即可.【详解】因为m的倒数是1,所以m=-1,所以m2018=(-1)2018=1,故选A.【点睛】本题主要考查倒数的概念和乘方运算,解决本题的关键是要熟练掌握倒数的概念和乘方运算法则.7、C【解析】有理数大小比较的法则:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小,据此判断即可【详解】解:根据有理数比较大小的方法,可得-2-111,在1、-1、1、-2这四个数中,最大的数是1故选C【点睛】此题主要考查了有理数大小

13、比较的方法,要熟练掌握,解答此题的关键是要明确:正数都大于0;负数都小于0;正数大于一切负数;两个负数,绝对值大的其值反而小8、D【解析】直接利用合并同类项法则以及完全平方公式和整式的乘除运算法则分别计算即可得出答案【详解】解:A5x2x=7x,故此选项错误;B(a+3)2=a2+6a+9,故此选项错误;C(a3)2=a6,故此选项错误;Da2pap=a3p,正确故选D【点睛】本题主要考查了合并同类项以及完全平方公式和整式的乘除运算,正确掌握运算法则是解题的关键9、C【解析】如图作,FNAD,交AB于N,交BE于M设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作

14、,FNAD,交AB于N,交BE于M四边形ABCD是正方形,ABCD,FNAD,四边形ANFD是平行四边形,D=90,四边形ANFD是矩形,AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,AN=BN,MNAE,BM=ME,MN=a,FM=a,AEFM,故选C【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型10、B【解析】根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k的方程即可.【详解】把x=2代入得,4-6+k=0

15、,解得k=2.故答案为:B.【点睛】本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、(,)【解析】分析:连接OC,过点A作AEx轴于E,过点C作CFx轴于F,则有AOEOCF,进而可得出AE=OF、OE=CF,根据角平分线的性质可得出,设点A的坐标为(a,)(a0),由可求出a值,进而得到点A的坐标详解:连接OC,过点A作AEx轴于E,过点C作CFx轴于F,如图所示ABC为等腰直角三角形,OA=OC,OCAB,AOE+COF=90COF+OCF=90,AOE

16、=OCF在AOE和OCF中,AOEOCF(AAS),AE=OF,OE=CFBP平分ABC,设点A的坐标为(a,),解得:a=或a=-(舍去),=,点A的坐标为(,),故答案为:(,)点睛:本题考查了反比例函数图象上点的坐标特征、全等三角形的判定与性质、角平分线的性质以及等腰直角三角形性质的综合运用,构造全等三角形,利用全等三角形的对应边相等是解题的关键12、6【解析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解【详解】解:正6边形的中心角为360660,那么外接圆的半径和正六边形的边长将组成一个等边三角形,边长为6的正六边形外接圆半径是6,故答案为:6.【点睛】本题考

17、查了正多边形和圆,得出正六边形的外接圆半径和正六边形的边长将组成一个等边三角形是解题的关键13、18【解析】要求代数式a3b2a2b2+ab3的值,而代数式a3b2a2b2+ab3恰好可以分解为两个已知条件ab,(ab)的乘积,因此可以运用整体的数学思想来解答【详解】a3b2a2b2+ab3=ab(a22ab+b2)=ab(ab)2,当ab=3,ab=2时,原式=232=18,故答案为:18.【点睛】本题考查了因式分解在代数式求值中的应用,熟练掌握因式分解的方法以及运用整体的数学思想是解题的关键.14、【解析】无理数包括三方面的数:含的,一些开方开不尽的根式,一些有规律的数,根据以上内容判断即

18、可【详解】解:4,是有理数,3、0都是有理数,是无理数故答案为:【点睛】本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:含的,一些开方开不尽的根式,一些有规律的数15、2或14【解析】分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】当弦AB和CD在圆心同侧时,如图,AB=16cm,CD=12cm,AE=8cm,CF=6cm,OA=OC=10cm,EO=6cm,OF=8cm,EF=OFOE=2cm;当弦AB和CD在圆心异侧时,如图,AB=16cm,CD=12cm,AF=8cm,CE

19、=6cm,OA=OC=10cm,OF=6cm,OE=8cm,EF=OF+OE=14cm.AB与CD之间的距离为14cm或2cm.故答案为:2或14.16、【解析】依据FDP=PBD,DFP=BPC=60,即可得到DFPBPH;依据DFPBPH,可得,再根据BP=CP=CD,即可得到;判定DPHCPD,可得,即PD2=PHCP,再根据CP=CD,即可得出PD2=PHCD;根据三角形面积计算公式,结合图形得到BPD的面积=BCP的面积+CDP面积BCD的面积,即可得出【详解】PC=CD,PCD=30,PDC=75,FDP=15,DBA=45,PBD=15,FDP=PBD,DFP=BPC=60,DF

20、PBPH,故正确;DCF=9060=30,tanDCF=,DFPBPH,BP=CP=CD,故正确;PC=DC,DCP=30,CDP=75,又DHP=DCH+CDH=75,DHP=CDP,而DPH=CPD,DPHCPD,即PD2=PHCP,又CP=CD,PD2=PHCD,故正确;如图,过P作PMCD,PNBC,设正方形ABCD的边长是4,BPC为正三角形,则正方形ABCD的面积为16,PBC=PCB=60,PB=PC=BC=CD=4,PCD=30PN=PBsin60=4=2,PM=PCsin30=2,SBPD=S四边形PBCDSBCD=SPBC+SPDCSBCD=42+2444=4+48=44,

21、故错误,故答案为:【点睛】本题考查了正方形的性质、相似三角形的判定与性质、解直角三角形等知识,正确添加辅助线、灵活运用相关的性质定理与判定定理是解题的关键.三、解答题(共8题,共72分)17、(1)-6;(2)【解析】(1)由点B(2,n)、D(33n,1)在反比例函数(x0)的图象上可得2n=33n,即可得出答案;(2)由(1)得出B、D的坐标,作DEBC延长DE交AB于点F,证DBEFBE得DE=FE=4,即可知点F(2,1),再利用待定系数法求解可得【详解】解:(1)点B(2,n)、D(33n,1)在反比例函数(x0)的图象上,解得:;(2)由(1)知反比例函数解析式为,n=3,点B(2

22、,3)、D(6,1),如图,过点D作DEBC于点E,延长DE交AB于点F,在DBE和FBE中,DBE=FBE,BE=BE,BED=BEF=90,DBEFBE(ASA),DE=FE=4,点F(2,1),将点B(2,3)、F(2,1)代入y=kx+b,解得:,【点睛】本题主要考查了反比例函数与一次函数的综合问题,解题的关键是能借助全等三角形确定一些相关线段的长18、(1)作图见解析;(2)证明书见解析.【解析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则MNF为所画三角形(2)延长DA至E,使得AE=CB,连结CE证明EACBCA,得:B =E,

23、AB=CE,根据等量代换可以求得答案【详解】解:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求(2)如图,延长DA至E,使得AE=CB,连结CEACB +CAD =180,DACDAC +EAC =180,BACBCA =EAC.在EAC和BAC中,AECE,ACCA,EACBCN,AECEACBCA (SAS).B=E,AB=CE.B=D,D=E.CD=CE,CD=AB考点:1.尺规作图;2.全等三角形的判定和性质19、 (1)y=3.4x+141.1;(1)当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总

24、利润最大,最大利润为117.4万元【解析】(1)根据题意可以得装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,从而可以得到y与x的函数关系式;(1)根据装花椒的汽车不超过8辆,可以求得x的取值范围,从而可以得到y的最大值,从而可以得到总利润最大时,装运各种产品的车辆数【详解】(1)若装运核桃的汽车为x辆,则装运甘蓝的汽车为(1x+1)辆,装运花椒的汽车为30x(1x+1)=(123x)辆,根据题意得:y=100.7x+40.5(1x+1)+60.8(123x)=3.4x+141.1(1)根据题意得:,解得:7x,x为整数,7x210.60,y随x增大而减小,

25、当x=7时,y取最大值,最大值=3.47+141.1=117.4,此时:1x+1=12,123x=1答:当装运核桃的汽车为2辆、装运甘蓝的汽车为12辆、装运花椒的汽车为1辆时,总利润最大,最大利润为117.4万元【点睛】本题考查了一次函数的应用,解题的关键是熟练的掌握一次函数的应用.20、 (1) 40%;(2) 2616.【解析】(1)设A市投资“改水工程”的年平均增长率是x根据:2008年,A市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可【详解】解:(1)设A市

26、投资“改水工程”年平均增长率是x,则解之,得或(不合题意,舍去)所以,A市投资“改水工程”年平均增长率为40% (2)6006001.411762616(万元)A市三年共投资“改水工程”2616万元21、(1)证明见解析;(2)【解析】(1)由题意推出再结合,可得BHEBCO.(2)结合BHEBCO ,推出带入数值即可.【详解】(1)证明:为圆的半径,是的中点,,,, , , 又,(2),, ,,得,解得, .【点睛】本题考查的知识点是圆与相似三角形,解题的关键是熟练的掌握圆与相似三角形.22、见解析【解析】根据等边三角形性质得B=C,根据三角形外角性质得CAD=BDE,易证.【详解】证明:A

27、BC是等边三角形,B=C=60,ADB=CAD+C= CAD+60,ADE=60,ADB=BDE+60,CAD=BDE,【点睛】考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.23、(1)50;(2)108;(3)【解析】分析:(1)根据B组的人数和所占的百分比,即可求出这次被调查的总人数,从而补全统计图;用360乘以A组所占的百分比,求出A组的扇形圆心角的度数,再用总人数减去A、B、D组的人数,求出C组的人数;(2)画出树状图,由概率公式即可得出答案本题解析:解:(1)调查的总人数是:1938%50(人)C组的人数有501519412(人),补全条形图如图所

28、示(2)画树状图如下共有12种等可能的结果,恰好选中甲的结果有6种,P(恰好选中甲)点睛:本题考查了列表法与树状图、条形统计图的综合运用熟练掌握画树状图法,读懂统计图,从统计图中得到必要的信息是解决问题的关键24、(1)见解析;(2)x11,x22【解析】(1)根据根的判别式列出关于m的不等式,求解可得;(2)取m2,代入原方程,然后解方程即可【详解】解:(1)根据题意,(m1)24(2m2)m26m12(m2)24,(m2)241,方程总有两个不相等的实数根;(2)当m2时,由原方程得:x24x21整理,得(x1)(x2)1,解得x11,x22【点睛】本题主要考查根的判别式与韦达定理,一元二次方程ax2bxc1(a1)的根与b24ac有如下关系:当1时,方程有两个不相等的两个实数根;当1时,方程有两个相等的两个实数根;当1时,方程无实数根

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 考试试题 > 初中数学

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁