《2022-2023学年湖北省孝感市八校联谊——中考数学四模试卷含解析.doc》由会员分享,可在线阅读,更多相关《2022-2023学年湖北省孝感市八校联谊——中考数学四模试卷含解析.doc(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023年中考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1如图,有一块含有30角的直角三角板的两个顶点放在直尺的
2、对边上如果244,那么1的度数是( )A14 B15 C16 D172如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )ABCD3方程5x2y9与下列方程构成的方程组的解为的是()Ax2y1B3x2y8C5x4y3D3x4y84如图,四边形ABCD内接于O,F是上一点,且,连接CF并延长交AD的延长线于点E,连接AC若ABC=105,BAC=25,则E的度数为( )A45B50C55D605的算术平方根是( )A9B9C3D36如图,在矩形ABCD中,AB5,AD3,动点P满足SPABS矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为()ABC5D7一、单选题如图
3、中的小正方形边长都相等,若MNPMEQ,则点Q可能是图中的()A点AB点BC点CD点D8一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD9将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )ABCD10已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周设点运动的时间为,线段的长为表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11分解因式:a2-2ab+
4、b2-1=_12有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是_13若关于x、y的二元一次方程组的解满足xy0,则m的取值范围是_14地球上的海洋面积约为361000000km1,则科学记数法可表示为_km1154是_的算术平方根16用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:第4个图案有白色地面砖_块;第n个图案有白色地面砖_块三、解答题(共8题,共72分)17(8分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作如的“理想值”(1)若点在直线上,则点的“理想值”等于_;如图,的半径为1若点在上
5、,则点的“理想值”的取值范围是_(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值(要求画图位置准确,但不必尺规作图)18(8分)解不等式组: .19(8分)如图,在平面直角坐标系中,二次函数y=(x-a)(x-3)(0a-1【解析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y0即可得到关于m的不等式,求得m的范围【详解】解:,+得1x+1y1m+4,则x+ym+1,根据题意得m+10,解得m1故答案是:m1【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键
6、是把m当作已知数表示出x+y的值,再得到关于m的不等式14、3.612【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】将361 000 000用科学记数法表示为3.612故答案为3.61215、16.【解析】试题解析:42=16,4是16的算术平方根考点:算术平方根16、18块 (4n+2)块 【解析】由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖
7、,所以可以得到第n个图案有白色地面砖(4n+2)块【详解】解:第1个图有白色块4+2,第2图有42+2,第3个图有43+2, 所以第4个图应该有44+2=18块, 第n个图应该有(4n+2)块【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力三、解答题(共8题,共72分)17、(1)3;(2);(3)【解析】(1)把Q(1,a)代入y=x-4,可求出a值,根据理想值定义即可得答案;由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将
8、点转化为直线,点理想值最大时点在上,分析图形即可【详解】(1)点在直线上,点的“理想值”=-3,故答案为:3.当点在与轴切点时,点的“理想值”最小为0.当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,设点Q(x,y),与x轴切于A,与OQ切于Q,C(,1),tanCOA=,COA=30,OQ、OA是的切线,QOA=2COA=60,=tanQOA=tan60=,点的“理想值”为,故答案为:.(2)设直线与轴、轴的交点分别为点,点,当x=0时,y=3,当y=0时,x+3=0,解得:x=,tanOAB=,如图,作直线当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值作轴
9、于点,的半径为1,如图当与直线相切时,LQ=,相应的圆心满足题意,其横坐标取到最小值作轴于点,则设直线与直线的交点为直线中,k=,点F与Q重合,则的半径为1,由可得,的取值范围是 (3)M(2,m),M点在直线x=2上,LQ取最大值时,=,作直线y=x,与x=2交于点N,当M与ON和x轴同时相切时,半径r最大,根据题意作图如下:M与ON相切于Q,与x轴相切于E,把x=2代入y=x得:y=4,NE=4,OE=2,ON=6,MQN=NEO=90,又ONE=MNQ,即,解得:r=.最大半径为.【点睛】本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进
10、行分类讨论18、x2.【解析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:,由得:x3,由得:x2,不等式组的解集为:x2.19、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值为.(3)当a=时,D、O、C、B四点共圆. 【解析】【分析】(1)根据二次函数的图象与x轴相交,则y=0,得出A(a,0),B(3,0),与y轴相交,则x=0,得出D(0,3a).(2)根据(1)中A、B、D的坐标,得出抛物线对称轴x=,AO=a,OD=3a,代入求得顶点C(,-),从而得PB=3- =,PC=;再分情况讨论:当AODBPC时,根据相似三角
11、形性质得,解得:a= 3(舍去);AODCPB,根据相似三角形性质得 ,解得:a1=3(舍),a2=;(3)能;连接BD,取BD中点M,根据已知得D、B、O在以BD为直径,M(,a)为圆心的圆上,若点C也在此圆上,则MC=MB,根据两点间的距离公式得一个关于a的方程,解之即可得出答案.【详解】(1)y=(x-a)(x-3)(0a3)与x轴交于点A、B(点A在点B的左侧),A(a,0),B(3,0),当x=0时,y=3a,D(0,3a);(2)A(a,0),B(3,0),D(0,3a).对称轴x=,AO=a,OD=3a,当x= 时,y=- ,C(,-),PB=3-=,PC=,当AODBPC时,即
12、 ,解得:a= 3(舍去);AODCPB,即 ,解得:a1=3(舍),a2= .综上所述:a的值为;(3)能;连接BD,取BD中点M,D、B、O三点共圆,且BD为直径,圆心为M(,a),若点C也在此圆上,MC=MB, ,化简得:a4-14a2+45=0,(a2-5)(a2-9)=0,a2=5或a2=9,a1=,a2=-,a3=3(舍),a4=-3(舍),0a3,a=,当a=时,D、O、C、B四点共圆.【点睛】本题考查了二次函数、相似三角形的性质、四点共圆等,综合性较强,有一定的难度,正确进行分析,熟练应用相关知识是解题的关键.20、 ;【解析】先对小括号部分通分,同时把除化为乘,再根据分式的基
13、本性质约分,最后代入求值【详解】解:原式=把代入得:原式=【点睛】本题考查分式的化简求值,计算题是中考必考题,一般难度不大,要特别慎重,尽量不在计算上失分21、-2(m+3),-1【解析】此题的运算顺序:先括号里,经过通分,再约分化为最简,最后代值计算【详解】解:(m+2-),=,=-,=-2(m+3)把m=-代入,得,原式=-2(-+3)=-122、135【解析】先证明AD=DE=CE=BC,得出DAE=AED,CBE=CEB,EDC=ECD=45,设DAE=AED=x,CBE=CEB=y,求出ADC=225-2x,BAD=2x-45,由平行四边形的对角相等得出方程,求出x+y=135,即可
14、得出结果【详解】解:四边形ABCD是平行四边形,AD=BC,BAD=BCD,BAD+ADC=180,AD=DE=CE,AD=DE=CE=BC,DAE=AED,CBE=CEB,DEC=90,EDC=ECD=45,设DAE=AED=x,CBE=CEB=y,ADE=1802x,BCE=1802y,ADC=1802x+45=2252x,BCD=2252y,BAD=180(2252x)=2x45,2x45=2252y,x+y=135,AEB=36013590=135【点睛】本题考查了平行四边形的性质,解题的关键是熟练的掌握平行四边形的性质.23、【解析】试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由A=ACD,AOB=COD可证ABOCDO,从而;再在RtABC和RtBCD中分别求出AB和CD的长,代入即可.解:ABC=BCD=90,ABCD,A=ACD,ABOCDO,在RtABC中,ABC=90,A=45,BC=1,AB=1在RtBCD中,BCD =90,D=30,BC=1,CD=,24、1.【解析】直接利用绝对值的性质以及特殊角的三角函数值分别化简得出答案【详解】3tan31+|2|(3)1(1)2118=3+211=+211=1【点睛】本题考查了绝对值的性质以及特殊角的三角函数值,解题的关键是熟练的掌握绝对值的性质以及特殊角的三角函数值.