《建筑力学第十一章.ppt》由会员分享,可在线阅读,更多相关《建筑力学第十一章.ppt(87页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第十一章第十一章 力法力法 111 111 超静定结构的组成和超静定次数超静定结构的组成和超静定次数 112 112 力法基本原理力法基本原理 113 113 力法举例力法举例 114 114 力法简化计算力法简化计算 115 115 力法计算校核力法计算校核第十一章第十一章 力法力法 超静定结构有如下特征:1)从几何构造分析的观点来看,超静定结构是有多余约束的几何不变体系11-1 11-1 超静定结构的组成和超静定次数超静定结构的组成和超静定次数一、超静定结构的组成一、超静定结构的组成一、超静定结构的组成一、超静定结构的组成 2)若只考虑静力平衡条件,超静定结构的内力和支座反力不能够由平衡方
2、程唯一确定,还要补充位移条件。如下图超静定梁,若只满足平衡条件,支座B的竖向反力可以是任意值。ABEI,l 若只满足平衡条件,超静定结构的内力和支座反力可以有无穷多组解答。二、超静定次数二、超静定次数二、超静定次数二、超静定次数超静定次数 n=结构多余约束数目。为了确定超静定次数,通常使用的方法是拆除多余约束,使原结构变成静定结构,则n等于拆除的多余约束数。规则:1)去掉或切断一根链杆,相当于去掉一个约束;2)去掉一个简单铰,相当于去掉两个约束;3)去掉一个固定支座或切断一根梁式杆,相当于去掉三个约束;4)在梁式杆上加一个简单铰,相当于去掉一个约束。例11-1:a)n=2原结构n=2b)n=2
3、n=2n=2原结构c)n=3原结构d)n=2原结构f)n=3 不要把原结构拆成几何可变体系。此外,要把超静定结构的多余约束全部拆除。原结构e)n=1原结构11-2 11-2 力法基本原理力法基本原理 解超静定结构,除应满足平衡条件外,还必须满足位移协调条件。一、一次超静定结构的力法计算一、一次超静定结构的力法计算一、一次超静定结构的力法计算一、一次超静定结构的力法计算1.1.1.1.力法的基本体系和基本未知量力法的基本体系和基本未知量力法的基本体系和基本未知量力法的基本体系和基本未知量 如下图示超静定梁,去掉支座B的链杆,用相应的未知力X1代替,X1称为力法基本未知量。去掉B支座的多余约束后得
4、到的静定结构称为力法基本结构。EIFPABl/2l/21PEIFP(BV=0)ABl/2l/2原结构FPAB基本体系AB11+FPABAB11)AB(X1基本结构2.2.2.2.力法方程力法方程力法方程力法方程力法方程为基本结构的位移=原结构的位移原结构B截面竖向位移因为方程可写为讨论:1)力法方程是位移方程。2)方程的物理意义:基本结构在荷载FP和未知量X1共同作用下沿X1方向的位移等于原结构B支座竖向位移。3)系数的物理意义:基本结构在X1=1作用下沿X1方向的位移。基本结构在FP作用下沿X1方向的位移。3.3.3.3.力法计算力法计算力法计算力法计算BlABl/2图FPAMP图1)求系数
5、及自由项3)作内力图2)求未知力X1M图FQ图AB二、多次超静定结构的力法计算二、多次超静定结构的力法计算二、多次超静定结构的力法计算二、多次超静定结构的力法计算 下面给出多次超静定结构的基本结构在荷载和未知力X分别作用下的位移图。原结构基本体系ABFPCDBH=0BV=0B=0ABFPCDX1X3X2AFPABCD2P1P3PBCD221232X2=1ABCD211131X1=1ABCD231333X3=1力法方程为 根据前面给出的位移图讨论力法方程和系数的物理意义。主系数:11、22、33恒大于零。副系数:ij(ij)可能大于、等于或小于零。i 表示位移的方位;j 表示产生位移的原因。由位
6、移互等定理:ij=ji,即12=21,23=32,31=13。作 图及MP图,求出力法方程的系数和自由项,解方程求出力法未知量,然后根据下式求内力:11-3 11-3 力法举例力法举例一、连续梁一、连续梁一、连续梁一、连续梁 用力法解连续梁时,其基本体系是将杆件在中间支座处变为铰,如下图所示。原结构 B=0 C=0ABCDlllEIEIEIABCD基本体系X1X2B=0 B左右截面相对转角等于零。C=0 C左右截面相对转角等于零。位移方程ABCD1PABCDX1=11121ABCDX2=112221.1.1.1.力法方程力法方程力法方程力法方程 方程各系数示于上页图中。讨论方程和系数的物理意义
7、。2.2.2.2.方程求解方程求解方程求解方程求解 图、图及MP图见下页图示。上述弯矩图的一个特征是:弯矩图局部化。ABCDMP图ABCDX1=11图ABCDX2=11图将系数代入力法方程就得到:解方程得:3.3.3.3.作内力图作内力图作内力图作内力图1)根据下式求各截面M值,然后画M图。2)根据M图求各杆剪力并画FQ图。ABFQABFQBAlM图ABCDAB杆:BCFQBCFQCBl很容易求得CD杆剪力为:FQ图ABCDBC杆:二、超静定刚架二、超静定刚架二、超静定刚架二、超静定刚架例11-4 求图示刚架M图。1.1.1.1.力法方程力法方程力法方程力法方程ABCE1I1 lE2I2 l原
8、结构ABCX2基本体系X1A=0B=02.2.2.2.方程求解方程求解方程求解方程求解ABCX1=111图E1I1 lE2I2 lABCX2=11E1I1 lE2I2 l图ABCMP图ABCX1=111图E1I1 lE2I2 lABCX2=11E1I1 lE2I2 l图将求得的系数代入力法方程就得到:解方程得:3.3.3.3.讨论讨论讨论讨论1)当k=0,即E1I1很小或E2I2很大,则刚架弯矩图为:可见,柱AB相当于在横梁BC的B端提供了固定约束。M图ABCBC2)当k=1,刚架弯矩图如图a)示。3)当k=,即E1I1很大或E2I2很小。由于柱AB抗弯刚度趋近于零,只提供轴向支撑,故梁BC相
9、当于简支梁,M图见图b)。ABCa)M图ABCb)M图结论:在荷载作用下,超静定结构的内力只与各杆抗弯刚度EI的比值k 有关,而与杆件抗弯刚度EI的绝对值无关。若荷载不变,只要 k 不变,结构内力也不变。三三 、超静定桁架、超静定桁架 以下图示桁架为例讨论两种基本体系的处理方法。除注明者外,其余各杆刚度为EA。原结构E1A1FPaa基本体系I:力法方程:力法方程的物理意义是:基本结构在荷载和X1共同作用下,杆AB切口左右截面相对于水平位移等于零。基本结构中包括AB杆。基本体系IFPABX1aaX1X1基本体系II:力法方程:力法方程的物理意义是:基本结构在荷载和X1共同作用下,结点A、B相对水
10、平位移等于杆AB的伸长,但符号相反。基本结构中不包括AB杆。X1X1AB基本体系IIX1FPaa例11-5 求上图示桁架各杆轴力,各杆EA相同。根据上述基本体系I求得各杆FNP及 标于图中。ABFPaaFPFP000FNP图ABaa1111X1=1图解:求得未知量后,桁架各杆轴力按下式计算:FN图四四 、排架、排架E1I1E2I2E1I1E2I2EA 例11-6 求图示排架M图。EIEI原结构5kN/mEA EIEA 6m2m 排架结构求解时,通常切断链杆以得到力法基本结构。这样,MP图和 图局部化,求解力法方程系数比较简单。解:1)基本体系和力法方程基本体系5kN/mX2X1MP图90kN.
11、m2)求系数和自由项 方程物理意义:横梁切口左右截面相对水平位移等于零。X1=166图X2=128图284)作M图M图(kN.m)1.475m45.7525.5818.674.675.443)求多余未知力五、单跨超静定梁有支座移动时的弯矩图五、单跨超静定梁有支座移动时的弯矩图1)AB图X1=11ABEI,lAABM图FQ图AB2)ABEI,lAB图X1=1lABM图FQ图AB3)ABEI,lAABX1X2ABX1=11图AB1X2=1图FQ图ABABM图4)ABEI,lAABM图图ABX1=115)ABEI,lABX2=1lABX1X2图ABX1=11图ABM图FQ图AB依据3),很容易得到右
12、图示内力图。ABM图FQ图AB6)ABEI,lB11-4 11-4 力法简化计算力法简化计算一、力法简化计算的思路一、力法简化计算的思路 若结构的超静定次数为n,则在荷载作用下其力法方程为:在上列方程中,主系数ii恒大于零,副系数 ij(ij)则可能大于零、等于零或小于零。若能使全部副系数ij等于零,则方程组解耦,力法方程变为:即使不能使全部副系数等于零,若能使大部分副系数等于零,则力法计算也将大大简化。所以,力法简化计算的目的:使尽可能多的副系数等于零。二、非对称结构的简化计算二、非对称结构的简化计算 对于非对称结构,为简化计算,应尽量使 图及MP图局部化,以简化方程系数的计算。所以,取基本
13、结构时应考虑这一因素。ABCD连续梁基本体系X2X3X1排架结构基本体系X2X1EA EA 多跨刚架基本体系三三 、对称结构的简化计算、对称结构的简化计算 对称结构:结构的几何形状、支承条件、杆件的材料性质及杆件的刚度均关于某轴对称就称为对称结构。用力法解对称结构,应取对称的基本结构,只有这样才能简化计算。1.1.1.1.对称结构在对称荷载作用下的简化计算对称结构在对称荷载作用下的简化计算对称结构在对称荷载作用下的简化计算对称结构在对称荷载作用下的简化计算FPaal/2aFPFPl/2EI1 hEI1 h原结构FPFP基本体系FPFP(对称)FPaMP图EI2X1,X2对称未知力X3反对称未知
14、力根据 ,MP 图的对称性或反对称性可知:于是,原力法方程变为:l/2(对称)11图(对称)hh图(反对称)l/2图 结论:对称结构在对称荷载作用下,其反对称未知力为零,只有对称未知力。2.2.2.2.对称结构在反对称荷载作用下的简化计算对称结构在反对称荷载作用下的简化计算对称结构在反对称荷载作用下的简化计算对称结构在反对称荷载作用下的简化计算al/2aFPFPl/2EI1 hEI1 h原结构FPFP基本体系FPFP(反对称)FPaFPaMP图EI2根据 ,MP图的对称性或反对称性可知:于是,原力法方程变为:(对称)11图(对称)图(反对称)l/2l/2hh 对于前两个方程组成的方程组,因其右
15、端项为零,且系数行列式的值通常不等于零,即结论:对称结构在反对称荷载作用下,其对称未知力为零,只有反对称未知力。于是,方程组只有零解:X1=0,X2=0。3.3.3.3.奇数跨或偶数跨对称结构的处理奇数跨或偶数跨对称结构的处理奇数跨或偶数跨对称结构的处理奇数跨或偶数跨对称结构的处理 若对称结构是奇数跨,则存在与对称轴相交之截面。切开该截面,则未知力分为两组:对称未知力和反对称未知力。若荷载对称或反对称,则按前述方法处理。X1,X2为对称未知力;X3为反对称未知力。若对称结构是偶数跨,则不存在与对称轴相交之截面,此时应根据荷载情况分别处理:1)对称荷载。对称结构在该对称荷载作用下,其内力和位移均
16、对称。FPFPFP原结构FP基本体系 2)反对称荷载。对称结构在反对称荷载作用下,其内力和位移均反对称。FPFP原结构FP基本体系FP4.4.4.4.非对称荷载的处理非对称荷载的处理非对称荷载的处理非对称荷载的处理对称结构通常作用有非对称荷载,处理方法为:1)非对称荷载分解为对称荷载和反对称荷载分别计算,然后叠加两种情况的结果。aaEI1EI1对称荷载aaFP/2FP/2EI1EI1反对称荷载EI2al/2FPl/2EI1EI1原结构FP/2FP/2=+EI2EI22)荷载不分解,只取对称基本体系。al/2FPl/2EI1 hEI1 h原结构FP基本体系FPFpaMP图EI2对称根据 ,MP图
17、的对称性或反对称性可知:于是,原力法方程变为:l/2(对称)11图(对称)图(反对称)l/2图hh5.5.5.5.组合未知力(广义未知力)组合未知力(广义未知力)组合未知力(广义未知力)组合未知力(广义未知力)结合下图示刚架进行说明。EI1原结构EI2EI1hl/2l/2EI1基本体系EI2EI1X1X2X1X2力法方程为:X1=1lMP图X1=1(对称)图X2=12lX2=1ll图(反对称)在上题中,X1实质上是对称结构在对称荷载作用下产生的未知力,而X2则是反对称荷载产生的未知力。EI1对称荷载EI2EI1l/2l/2X1X1q/2EI1反对称荷载EI2EI1l/2l/2X2X2q/2q/
18、2四四 、举例、举例例11-7 右图示结构,讨论用力法简化计算。将荷载分解为对称荷载和反对称荷载。在对称结点荷载作用下,由于不考虑杆件的轴向变形,其M等于零。在反对称结点荷载作用下,只有一个未知量X4。原结构FPEIEIEIEI2EI2EIFP/2EIEI对称荷载EIEI2EI2EIEIEI反对称荷载EIEI2EI2EIFP/2ABFN=-FP/2FP/2FP/2X2=0X1=0X40X3=0FP/2FP/2+图示对称结构,各杆EI相同,讨论力法的简化计算。解:将荷载分为两组:第一组荷载关于x和y 轴都对称,见图b)。第二组荷载关于y 轴对称,关于x 轴反对称,见下页图c)。y2FPFPFPb
19、)2FPFPFPxFN=-FPFN=-2FPFN=-FPM=0aaaAB04FP2FP2FPa)例11-8 由于不考虑杆件的轴向变形,上页图 b)荷载作用下各杆弯矩等于零。图c)荷载关于x轴反对称,切开与x轴相交的截面,未知力分为两组:对称未知力X1,X2以及反对称未知力X3。所以对称未知力X1,X2等于零,只有反对称未知力X3,如图d)所示。y2FPFPFPc)2FPFPFPxX1=0X1=02FPFPFPd)2FPFPFPyxX30X2=0X30X2=011-5 11-5 超静定结构的位移计算及力法计算校核超静定结构的位移计算及力法计算校核一、一、超静定结构的位移计算超静定结构的位移计算
20、用力法求出超静定结构的内力后,欲求某截面的位移,则单位荷载可以加在任选的基本体系上,即超静定结构的位移计算可以在任选的基本体系上进行。对于某超静定结构,所选取的各种基本体系在外因(荷载、温度变化、支座移动)以及未知力X共同作用下,其内力和变形与原结构完全相同。所以求原结构的位移就转化为求基本体系的位移。例11-12 求梁中点竖向位移CV,EI为常数。解:1)单位荷载加在原结构上原结构ABl/2l/2Cl/8CABCAB1l/8l/8图M图12y1y22)单位荷载加在基本体系I上基本体系IABCAACBCB1l/4图M图12y1y2ql2/243)单位荷载加在基本体系II上基本体系IIABCCA
21、BCAB1l/2图M图21y2y1例11-13 求图示刚架结点水平位移DH,结构M图及各杆EI如图示。解:单位荷载分别加在四种基本体系上,显然基本体系1的计算最简单(见下页图)。2EI2EI7kN/m3EI6m6mACDBACDB14.431.557.630.623.4M图(kN.m)X167kN/mACDB基本体系1ACDB1图67kN/mCDB基本体系2X1X2X3X2X3CDBAA1图图图37kN/mCDB基本体系3X3X2X1CDBAA13367kN/mCDB基本体系4X3X1X2CDBAA16二、二、超静定结构内力图的校核超静定结构内力图的校核 对于超静定结构的内力图,除了校核求得的
22、M、FQ、FN是否满足平衡条件外,最主要的是变形条件的校核。只有既满足平衡条件又满足变形协调条件的解答才是超静定结构的正确解答。在进行变形条件的校核时,通常选择原结构位移等于零的截面进行校核,也就是进行超静定结构的位移计算。如下页图连续梁,可以校核BV、CV、DV是否等于零,也可以校核 、B、C是否等于零。校核图校核DVABCD1ABCD1图校核 BABCD1M图ABCD图 对于如下图示封闭刚架,可以得到位移校核的简单公式。(梁、柱长均为6m。)上图封闭刚架已求得弯矩图,为验算E左右截面相对转角E是否等于零,切开E截面,加上一对单位集中力偶,得到 图,则图ACDB1111EACDB14.431
23、.557.630.623.4M图(kN.m)2EI2EI3EI 由上式可以得出结论,当结构只受荷载作用时,封闭刚架 M/EI 图形的面积之和等于零。在计算M/EI的面积之和时,规定刚架外侧的面积为正,刚架内侧的面积为负,或者相反。M图(kN.m)ACDB14.431.557.630.623.42EI2EI3EI例11-14 判断如下图a)所示弯矩图是否正确。显然,可知M图有错误。ABCDM图a)ABCD图b)1例11-15 判断如下图a)所示结构结点D水平位移的方向。解:取图b)所示基本体系,在结点D加单位水平荷载,作 图。可见,结点D水平位移方向向右。ACDB14.431.557.630.623.4a)M图(kN.m)2EI2EI3EIACDB16b)图y本部分内容结束