《综合系统评价的方法研究报告.pdf》由会员分享,可在线阅读,更多相关《综合系统评价的方法研究报告.pdf(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-.可修编.系统综合评价的方法 摘要 在我国社会主义现代化建设的今天,无论是在国家的宏观调控,还是在企事业单位的管理中,人们都要面对种种复杂多变的社会问题和经济现象。它们的分析和比较不仅需要科学的定性分析,更迫切需要定量分析方法的支撑。这个时候,应用数学的价值就突显了出来。在我们研究的评价科学的广泛应用领域里,存在大量的现象和行为可以用数学方法来表达和解决。众所周知,正确的决策来源于科学的评价,评价是决策的关键。综合评价通常指对被评价对象所进行的客观、公正、合理的全面评价,如果把被评价对象视为系统的话,可抽象地表述为:在若干个(同类)系统中,如何确认哪个系统的运行(或发展)状况好与差。属性综合
2、评价的理论、方法在管理科学与工程领域中占有重要的地位,已成为经济管理、工业工程及决策等领域中不可缺少的重要内容x,且有着重大的实用价值和广泛的应用前景,特别是针对那些诸如候选人排队、重大项目方案的选优、企业经营决策等问题来说,综合评价问题显得尤为重要。随着人们对社会现象、经济规律认识的不断深入,多目标决策问题呈现出的指标集增多、数据量急增、评价方法多样化的趋势。在这个过程中,繁琐的数据处理和复杂的建模分析在没有计算机辅助的情况下是不可想的。从而,对评价问题建立有力的支持成为很多领域的需求。计算机的应用对系统分析的作用无疑是巨大的。在当今,人性化的计算机操作系统和新的可视化计算机语言给用非计算机
3、专业的编程人员和用户带来了方便。在评价决策中,运用定性与定量相结合,集成多种计算分析的模型,面向广泛的应用领域,开发通用的评价决策支持系统软件不仅是决策科学的需求,也是信息发展的需求。这必将促使科学的评价与决策方法在管理、经济、工程项目等-.可修编.多方面的应用领域中广泛开展、不断深入。关键词:综合评价,灰色关联 综合评价的概念 综合评价(prehensive Evaluation)是对被评价对象所进行的客观、公正、合理的评价。是指人们根据不同的评价目的,选择相应的评价形式,据此选择多个方面的因素或指标,并通过一定的评价方法,将多个评价因素或指标转化为能反映评价对象总体特征的信息。综合评价的对
4、象系统常常是社会、经济、科技、教育、环境和管理等一些复杂系统(plex System)。综合评价的结果,是对被评价事物一般水平或趋势的抽象程度较高的数量描述,这种描述具有整体性和全面性,具有实际社会经济含义。一般地,一个综合评价问题由5个要素组成:评价对象、评价指标、权重系数、集结模型及评价者。综合评价的研究现状与发展趋势 1)探索新的综合评价方法 虽然目前已有一些综合评价方法较好地考虑和集成了综合评价过程中的各种定性与定量信息,但是这些综合评价方法在应用中仍摆脱不了综合评价过程中的随机性和评价专家主观上的不确定性及认识上的模糊性。即使是同一评价专家,在不同的时间和环境对同一评价对象也往往会得
5、出不一致的主观判断。综合评价中,有时既要能充分考虑评价专家的经验和直觉思维的模式,又要能降低综合评价过程中人为的不确定性因素,既具综合评价方法的规X性又能体现出较高的问题求解效率。2)综合运多种评价方法 综合评价是个十分复杂的问题,它涉及评价对象集、评价目标(指标)集、评-.可修编.价方法集、评价人集,综合评价结果由以上诸因素特定组合所决定。传统的评价方法对以上组合的选择缺乏理性标准影响评价结论的客观性。采用综合集成的思想,将两种或两种以上的方法加以改造并结合,获得一些新的评价方法。相关的研究成果归结起来有四类:(1)一般的综合评价方法与模糊综合评价方法合成 结合方法模糊化和灰色化,西蒙提出管
6、理从“最优化”到“满意度”的转变。现代管理科学趋向于“软化。评价对象由于运行机制不清楚行为信息不完全决策目标具有模糊性且难以量化,于是在原有的综合评价方法中引进了可能度和满意度的概念。模糊数学的“隶属度和灰色系统理论中的“灰度正好是实现“柔化”的有效工具,基于此而产生的些初步集化的方法。(2)一般评价方法与人工智能方法的集成 这种集成就是评价方法智能化。随着计算机技术的迅猛发展,管理科学中不断采用新技术使得决策更加科学化、XX化、智能化。目前主要有以下几种综合评价方法:模糊人工神经网络评价方法,群决策支持系统(GDSS)的应用。(3)评价方法的动态化 动态评价方法分两类:一类是确定评价指标在不
7、同时刻的权重系数,是目前研究的热点;第二类,因为在时间序列中对象的属性在变化,在不同时间评价指标也应当调整,这方面的研究尚属起步。(4)对评价对象的评价和对评价人的评价的集成 这种集成就是评价要素集成化。传统的评价方法是研究被评价对象的多属性指标的集成化问题。但对含有软指标或结构不良的对象的评价往往离不开专家,专家的偏好和水平对评价结果会有重要影响。基于评价人集的专家群评价方法的-.可修编.研究,旨在解决对含有软指标或结构不良的对象进行评价时,由于专家判断的主观性而引起的评价结论不一致问题。专家群评价研究的思路是将对对象的评价和对专家的评价结合起来,实际上体现了集成的思想。(5)集成价值链绩效
8、综合评价思想价值链集成化 迈克尔波特(哈佛大学)在竞争优势中引入价值链分析方法,将企业以 及相关联的主体看作创造同一个价值的整体。许多学者提出,集成价值链综合评价方法注重企业的整体绩效:一方面对顾客价值采用定性评价方法;另一方面对供应链进行全过程评价,得到综合绩效。3)推广和发展现有综合评价方法 现有的综合评价方法往往理论研究与实际应用脱节。随着理论研究的深入,评价方法越来越复杂,又没有有效地面向广大的实际工作者,以至实际工作者望而生畏。理论成果的推广应用受到很大的局限。应该说目前不少的研究成果具有一定的理论意义,但理论与实践严重脱节的现象也是不争的事实。综合评价方法的研究首先应加强基于方法集
9、的组合评价研究。方法集是指能独立完成对对象进行评价的方法的全体。基于方法集的组合评价方法是指,在评价的基本原则指导下,根据一定。的准则和规则从基本评价方法集中抽取若干方法,并运用这些评价方法对被评价对象进行评价,然后寻找理想的组合算法模型对以上评价结果进行优化组合的全过程。4)运用先进技术方法,构成集成式综合评价支持系统 目前出现的一些评价系统的集成化程度和智能化程度都是较低的,而且这些系统中的方法基本是MODM的有关方法,其它如AHP,DEA等方法都很少涉及。将 -.可修编.决策分析方法同专家系统结合将会进一步增强系统的问题求解能力和人机交互友好性。要对复杂对象系统进行有效的评价,就必须将评
10、价专家(群体)的经验和知识、评价指标的数据信息、多种评价方法、相关的先进技术(如人工智能、知识工程、专家系统、人工神经网络、模糊集理论、计算机信息处理技术等)、计算机软硬件有机结合起来,从而构成一集成式智能化评价支持系统。综合评价指标体系建立的原则 指标体系是综合评价的基础,合理的指标体系是保证综合评价质量的关键问题之一。所以建立科学的综合评价指标体系首先应遵循以下原则。1)与目标一致原则 综合评价首先要确定被评对象及评价目标。评价目标主要由评价指标体系来体现。因此在建立指标体系时必须要保证和评价目标的一致性。2)科学性原则 建立指标体系时应坚持科学性原则,遵循事物的发展规律,便于应用现代的科
11、学技术,保证指标体系自身的内容、结构等科学合理。3)全面性原则 对于一个综合评价问题,指标体系应能反映所有的重点方面,对重要目标、信息没有遗漏,这样才能保证综合评价的全面性。4)有效性原则 也称非冗余性原则。在遵循全面性原则的同时,指标体系的设立也不应盲目求全、求精,而应力求指标简单有效。对于对评价目标无重要影响,或各被评对象间无差别的指标应通过筛选进行删除。5)独立性原则 -.可修编.指标体系同层次的指标应相互独立,这样才能保证对同一目标不会重复计算,同时各指标的相互独立也是各种加权法的前提。但不同层次的指标间可以是从属关系,而不要求独立性。6)可测性原则 指标体系的各指标必须易于理解,无二
12、义性,其所包含的内容必须可以直接或间接测定。系统综合评价的方法 评价需要解决的主要问题是分类、排序和整体评价,评价方法主要围绕此类目的展开。有关系统评价的理论和方法大致可以分为三类:一是以数理理论为基础的方法。它以数学理论和解析方法对评价系统进行定量描述和计算,通常需要在一定的假设条件下进行评价。评价方法主要有模糊分析法、灰色系统分析法、技术经济分析法等;二是以统计分析为主的方法。其特点是把统计样本数据看做随机数据处理,对指标数据进行转化,所得均值、方差、协方差反映指标潜在的规律,通过统计方法对指标体系进行分析,得出在大样本数据下对评价对象的综合认识。评价方法有主成分分析法、因子分析法、聚类分
13、析法、判别分析法、关联分析法、层次分析法等;三是重现决策支持的方法。以计算机系统仿真和模拟技术为主,研究如何使系统的运行和人类行为目标的一致,以此得出系统评价结果。灰色关联分析法 灰色系统与灰色关联分析 1982年我国学者邓聚龙教授发表第一篇中文论文 灰色控制系统 标志着灰色系统这一学科诞生。之后,灰色系统在理论方法和实际应用上均有了长足的进展,为预测和决策提供了全新的思路和方法。灰色关联分析是灰色系统理论的一-.可修编.个重要分支,应用灰色关联分析方法对受多种因素影响的事物和现象从整体观念出发进行综合评价是一个被广为接受的方法。灰色关联分析是一种用灰色关联度顺序来描述因素间关系的强弱、大小、
14、次序的方法,是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。其基本思想是:以因素的数据序列为依据,用数学的方法研究因素间的几何对应关系,即序列曲线的几何形状越接近,则它们之间的灰关联度越大,反之越小。在数理上将它转化为量化比较,将几何曲线之间的比较转化为数据列与数据列之间的比较。灰色关联分析实际上也是动态指标的量化分析,充分体现了动态意义。灰色关联分析的步骤 1)评价数据矩阵的建立 根据评价目的确定评价指标体系,收集评价数据。设t1个数据序列形成如下矩阵:对指标数据进行标准化。标准化后的数据序列形成如下矩阵:-.可修编.1)确定参考数列 参考数列应该是一
15、个理想的比较标准,可以以各指标的最优值(或最劣值)构成参考数据列,也可以根据评价目的选择相应的参照值。数据矩阵就是和参考数列 进行比较计算,求出最接近参考数列的数据行或者列。将参考数列记作:3)计算差序列,求两极最大、最小差 逐个计算每个被评价对象指标序列与参考序列对应元素的绝对差值。求出差序列之后,确定 以便进行下面的数值计算。4)计算关联系数 由下式,分别计算每个指标序列与参考序列对应元素的关联系数。其中七=l,2,m。r为分辨系数,在(0,1)内取值。若厂越小,关联系数-.可修编.间的差异越大,区分能力越强。通常,r 取05。如果为最优值数据列,则z(k)越大越好。5)计算灰色关联度 对
16、各评价对象分别计算其各指标与参考数列对应元素的关联系数的均值,以反映各评价对象与参考数列的关联关系,并称其为灰色关联度,记为:如果各指标在综合评价中所起的作用不同,即各指标的权重大小不同,可对关 联系数求加权平均值,即:6)依据灰色关联度排序 根据以上公式计算出来的灰色关联度的大小是衡量序列之间紧密程度的一种尺度,我们主要关心的是评价指标序列与参考数列关联度大小的顺序。依据各观察对象计算得出的灰色关联度进行排序,得出最后的综合评价结果。灰色关联分析法的改进 对数据预处理的改进 在传统的灰色关联法在进行分析时,首先对数据进行预处理,即无量纲处理,然而在实际应用中,有的序列由不同的物理量组成,且数
17、量级相差较大时,就不能进行无量纲处理;对于能进行无量纲处理的序列,经过处理后会使变化X围较小的因素权重加大,使变化X围较大的因素作用减弱,导致影响因素等同化,同时还增加计算量。因此数据无量纲化这一步骤未必合理,一种对灰色关联分析方法进行的改进是对数据不作任何处理,简化计算过程,这样既避免了因素等同化,-.可修编.又能客观反映各项被评价指标的综合效应。但是这种改进方法须依据实际评价模型情况而定,评价者须对所要评价的问题有比较深入和全面的认识才可以有效应用该改进方法得出客观准确的评价。对指标赋权方法的改进 GRA的核心是计算关联度,原有的关联度计算公式对各样本采用平权处理,客观性较差,不符合某些样
18、本更为重要的实际情况。针对这一方向对指标赋权方法进行改进,最后对关联系数求加权平均值计算得到的关联度将更加贴近实际情况,提高了灰色关联分析的客观性。现介绍两种为灰色关联度中指标赋权的改进方法。1)基于层次分析法的改进 层次分析法把复杂问题中的各种因素通过划分为相互联系的有序层次,使之条 理化,并把数据、专家意见和分析者的主客观判断直接而有效地结合起来,就每一层次的相对重要性给予定量表示,然后用数学方法确定表达每一层次全部要素的相对重要性权数。运用层次分析法求指标权重的计算过程下文将予以描述。基于层次分析法计算出的指标权重,来进行关联度的计算和排序,从而得出客观的评价结果。2)基于距离分析法的改
19、进 距离分析法的基本思想是,一般以最优样本(也称理想样本)和最劣样本(也 称负理想样本)为参考样本。计算各个样本离参考样本的距离,离最优样本点近,离最劣样本远的样本为总体较好的样本。该方法以样本点到最优样本点的相对接近度赋权。对参考数列选取的改进 -.可修编.传统灰色关联分析方法已在实际中广泛运用。然而该方法十分依赖对参考数列的准确性,当参考信号的特征比较分散,具有比较大的自由性,关联分析的准确性和可靠性都将大大地降低。该方法对参考数列的选取进行了改进。假设有m b个参考数列,如下:其中属于同一族参考数列,记为y,它的各个分量之间具有较强关联性,同时在某种程度上又有一定的独立性。参考数列和原数
20、据矩阵相互关系如图32所示,其中包括两族参考数列(y1,y2)和两个比较数列,每族参考数列又包括4个单个参考数列:-.可修编.同传统的灰色关联分析相比,该改进灰色关联分析具有两个优点:(1)提高灰色关联分析的准确性和可靠性。改进灰色关联分析方法的效果不倚赖于单个的参考数列,而是取决于一族参考数列的整体性能,所以它比传统的方法准确性和可靠性更高。(2)降低了对参考数列数据准确性的要求,比传统的灰色关联分析有更广的应用X围。改进灰色关联分析方法可应用于参考数列具有较强分散性和独立性的领域。对分辨系数r取值的改进 传统灰色关联分析中分辨系数r的一般取值为05,但实际上关联系数z(k)不仅与参考序列K
21、和评价数据矩阵有关,而且与关联空间位置有关。这是由于关联度通过差值绝对值的最大值表征整个系统的整体性,而分辨系数r作为最大值的权重,它的取值大小在主观上体现了研究者对最大值的重视程度,在客观上则反映了系统的各个因素对关联度的间接影响程度。因此在改进的灰色关联分析中-.可修编.对,的取值进行了合理的规定,既要充分体现关联度的整体性,还要具有抗干扰的作用,即能够削弱观测比较序列中的异常值对整个关联空间的误差影响。据此分辨系数r的确定方法如下:首先根据上文建立三维的关联空间,假设被评价数据序列指标个数为m,被评价样本个数为 n,选择的参考数列个数为t,记 则 r 的取值区间为:根据上式确定了分辨系数
22、r的动态取值,再根据关联系数和关联度计算公式完成接下来的评价工作。该方法通过新的分辨系数确定方法改进了关联系数计算公式,使关联度计算建立在空间的整体性和低误差影响的基础之上,从而进一步提高了灰色关联分析方法的分辨率和可靠度。灰色关联分析方法评价 灰色关联分析是按事物的发展趋势做分析,因此对样本量的多少没有过多的要求,也不需要典型的分布规律,而且计算量比较小,其结果与定性分析结果会比较吻合,所以灰色关联分析是一种很具有自己独特优势的、比较实用和可靠的分析评价方法。在实际应用中,灰色关联分析方法具有十分广泛的应用X围。只要将研究对象的信息收集成功并科学的预处理,就可以运用灰色关联分析的方法对其进行
23、综合评价得到理想的评价结果。灰色关联分析方法多适用于拥有实际测量数据记录或评分支持的系统,对数据的标准化程度和参考数列的选取要求严格,计算过程中如需考虑到指标权重,-.可修编.则可进行加权运算,计算结果具有较高分辨率和准确度。所以该方法是一种实际应用较为广泛的评价方法。本文总结 系统的综合评价是系统工程学研究的重要方向。综合评价是科学决策的前提,其目的就是希望能对若干对象按一定意义排序,从中挑出最优或最劣对象。对于每一个评价对象,通过综合评价和比较找到自身的差距,也便于及时采取措施,进行改进。综合评价这种定量分析技术得到了广泛的认同,它为人们正确认识事物、科学决策提供了有效的手段。研究展望 系
24、统综合评价是一个不断发展的学科,随着相关领域学科的发展,新的评价理论与评价方法会不断的出现,繁荣着评价理论,给系统评价带来新的发展。通过对系统综合评价理论和方法应用的了解和研究基础上,系统综合评价工作可以对如下问题做进一步的研究和完善:1)评价指标体系的完善。评价指标体系是综合评价活动成败的关键。要注意 的问题有:评价指标体系需与评价目的相一致和协调;指标选取准确而清晰;指标预处理工作更加准确、具有实际意义。2)评价方法的创新与改进。现有的评价方法已经具有一定的评价能力,但是面对更加复杂的实际分析问题,需在实践中不断寻找新的评价方法或对以有方法进行科学的改进,提高评价的合理性和实用性。并将成功的评价方法总结备案,以备将来的继续研究。3)评价领域内存在着方法与应用严重脱节的现象。许多方法很难为实践中的诸多评价问题提供科学的决策支持。在信息技术飞速发展的今天,最有效的途径-.可修编.就是开发通用的综合评价决策支持系统。