《四年级上册数学教案4.2三角形的内角和青岛版(五四学制).pdf》由会员分享,可在线阅读,更多相关《四年级上册数学教案4.2三角形的内角和青岛版(五四学制).pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、三角形的内角和教学设计 教学目标:1通过“量一量”、“算一算”、“拼一拼”、“折一折”的小组活动的方法,探索发现验证三角形内角和等于 180,并能应用这一知识解决一些简单问题。2发展学生动手操作、观察比较和抽象概括的能力。通过把三角形的内角和转化为平角进行探究实验,渗透“转化”的数学思想。3通过数学活动使学生获得成功的体验,增强自信心。培养学生的创新意识、探索精神和实践能力。教学重、难点:验证三角形的内角和是 180。因为学生已经掌握了三角形的概念、分类,熟悉了钝角、锐角、平角这些角的知识。对于三角形的内角和是多少度,学生并不陌生,也有提前预习的习惯,学生几乎都能回答出三角形的内角和是 180
2、。在整个过程中学生要了解的是“内角”的概念,如何验证得出三角形的内角和是 180。因此本节课我提出的教学的重点是:验证三角形的内角和是 180。教具、学具准备:师:课件,表格若干,三角板,量角器;生:直角三角形、锐角三角形和钝角三角形各一个,量角器,一副三角板。教学过程:一、复习旧知、谈话导入 师:三年级我们学过的角有哪些?什么是平角?平角多少度?猜谜语:形状似座山,稳定性能坚;三竿首尾连,学问不简单。(打一几何图形)师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?学生讲学过的三角形知识。二、创设情境,引出课题,以疑激思 师:什么是三角形的内角?三角形有几个内角?生:就是三角形内的
3、三个角。每个三角形都有三个内角。师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。师:有两个三角形为了一件事正在争论,我们来帮帮他们。(播放课件)师:同学们,请你们给评评理:是这样吗?生 1:我认为是这样的,因为大三角形大,它的三个内角的和就大。生 2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。生 3:当然是大三角形的内角和大了。生 4:我同意第二个同学的意见,两个三角形的内角和一样大。师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都
4、是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)三、动手操作,探究问题,以动启思 1、师拿出两个三角板,问:它们是什么三角形?生:直角三角形。师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。(学生们能够很快求出每块三角尺的 3 个角的和都是 180,由于学生在四年级上册教材里已经知道了两块三角尺上的每一个角的度数,所以能够很快求得每块三角尺的 3 个角的和都是 180)师:不用计算,你能用已学过的知识进行推理来验证“直角三角形的内角和是 90”这个结论吗?(师给以提示:还记得上学期在学习平行与垂直
5、时,老师提到的“内错角”吗?)课件演示(课件闪动表示相等的2 与5,3 与4),师讲解:因为长方形的四个角都是直角,也就是2+34+590,又因为内错角34,所以其中一个三角形的3+5+6 相当于4+5+690+90180 师:其实,只要我们遇到问题,多观察、多分析、多思考,你会发现可能会有多种方法都是可以解决问题的。师:直角三角形的内角和是 180,那,其他三角形的内角和也是 180吗?生 A:其他三角形的内角和也是 180 生 B:其他三角形的内角和不是 180 生 C:不一定 2、师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行
6、交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。(1)、小组合作,讨论验证方法(2)汇报验证方法、结果 谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样?生 A:我们小组是用剪拼的方法,将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是 180 度。师:上来展示给大家瞧一瞧。(投影仪展示)你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给 3 个角标上了符号。师播放课件:剪(撕)拼法:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3 个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角
7、形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。生:不管什么三角形三个角都能拼成一个平角。师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是 180,你们觉得这种方法好不好?那我们把掌声送给刚才这个小组。生 B:我们小组是用撕的方法。我们是用手把 3 个角撕下来,然后再拼,结果也能拼成一个平角。生 C:我们小组是用折的方法,同样得到三角形的内角和是 180 度。师:请这位同学折来给大家看看。(投影仪展示)生:3 个角折成了一个平角。师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)锐角三角形、钝角三角形都
8、折了几次?(3 次)现在请同学们看屏幕,让我们来看看直角三角形折了几次?(课件展示:直角三角形折的过程)师:折了几次?想想为什么直角三角形可以只折两次就能证明。生;因为它是一个直角三角形,已经有了一个直角,另外 2 个锐角只要能拼成直角,三个角的和就是 180了。师:说得真清楚。3、师:老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:汇报。问:你们发现了什么?小结:通过测量我们发现每个三角形的三个内角和都在 180 度左右。师:三角形的内角和就是 180 度,只是因为我们在测量
9、时会出现一些误差,所以测量出的结果不是很准确。4、师小结:刚才同学们用量、剪、拼、折等方法证明了无论是什么样的三角形内角和都是 1800,(板书:是 180)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是 1800”。5、师:(出示一个大三角形)它的内角和是多少度?生:180。师:(出示一个很小的三角形)它的内角和是多少度?生:180。师:一块三角尺的内角和 180,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?师:把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?(生有的答90,有的 180。)师:哪个对?为什么?生:180,因为它还是一个三角形
10、。师:每个小三角形的度数是 180,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?这时学生的答案又出现了 180和 360两种。师:究竟谁对呢?生 1:180,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是 180。生 2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少 180,所以大三角形的内角和还是 180,不是 360。师:表扬:你真聪明。(课件演示:)师:三角形不论位置、大小、形状如何,它的内角和总是 180 四、解决问题:学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学
11、问题。(课件呈现)1、求三角形中一个未知角的度数。(1)在三角形中,已知1=70,2=50,求3。(2)在三角形中,已知1=78,2=44,求3。(3)选算式:(1)A=180-55(2)A180-90-55(3)A=90-55 2、判断(1)一个三角形的三个内角度数是:80、75、24。()(2)三角形越大,它的内角和就越大。()(3)一个三角形至少有两个角是锐角。()(4)钝角三角形的两个锐角和大于 90。3、解决生活实际问题。(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是 70,它的顶角是多少度?(2)交通警示牌“让”为等边三角形,求其中一个角的度数。4、拓展练习。利用三角形内角和是 180,求出下面四边形、六边形的内角和?(课件呈现)师:小组的同学讨论一下,看谁能找到最佳方法。学生汇报,在图中画上虚线,教师课件演示。请同学们自己在练习本上计算。