《数学初二必背的知识点.docx》由会员分享,可在线阅读,更多相关《数学初二必背的知识点.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 数学初二必背的知识点数学初二必背的学问点1 1全等三角形的对应边、对应角相等 2边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 3角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 4推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 5边边边公理(SSS)有三边对应相等的两个三角形全等 6斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 7定理1在角的平分线上的点到这个角的两边的距离相等 8定理2到一个角的两边的距离一样的点,在这个角的平分线上 9角的平分线是到角的两边距离相等的全部点的集合 10等腰三角形的性质定理等腰三角形的两
2、个底角相等(即等边对等角) 21推论1等腰三角形顶角的平分线平分底边并且垂直于底边 22等腰三角形的顶角平分线、底边上的中线和底边上的高相互重合 23推论3等边三角形的各角都相等,并且每一个角都等于60 24等腰三角形的判定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 25推论1三个角都相等的三角形是等边三角形 26推论2有一个角等于60的等腰三角形是等边三角形 27在直角三角形中,假如一个锐角等于30那么它所对的直角边等于斜边的一半 28直角三角形斜边上的中线等于斜边上的一半 29定理线段垂直平分线上的点和这条线段两个端点的距离相等 30逆定理和一条线段两个端点距
3、离相等的点,在这条线段的垂直平分线上 数学初二必背的学问点2 平方根与立方根学问点 平方根: 概括1:一般地,假如一个数的平方等于a,这个数就叫做a的平方根(或二次方根)。就是说,假如x=a,那么x就叫做a的平方根。如:23与-23都是529的平方根。 由于(23)=529,所以23是529的平方根。问:(1)16,49,100,1100都是正数,它们有几个平方根?平方根之间有什么关系?(2)0的平方根是什么? 概括2:一个正数有两个平方根,它们互为相反数;0有一个平方根,它是0本身;负数没有平方根。 概括3:求一个数a(a0)的平方根的运算,叫做开平方。 开平方运算是已知指数和幂求底数。平方
4、与开平方互为逆运算。一个数可以是正数、负数或者是0,它的平方数只有一个,正数或负数的平方都是正数,0的平方是0。但一个正数的平方根却有两个,这两个数互为相反数,0的平方根是0。负数没有平方根。由于平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根。 一、算术平方根的概念 正数a有两个平方根(表示为?根,表示为a。0的平方根也叫做0的算术平方根,因此0的算术平方根是0,即0。”是算术平方根的符号,a就表示a的算术平方根。a的意义有两点:a,我们把其中正的平方根,叫做a的算术平方 (1)被开方数a表示非负数,即a0; (2)a也
5、表示非负数,即a0。也就是说,非负数的“算术”平方根是非负数。负数不存在算术平方根,即a0) 最简二次根式:一般地,被开方数不含分母,也不含能开的尽方的因数或因式,这样的二次根式,叫做最简二次根式 化简时,通常要求最终结果中分母不含有根号,而且各个二次根式时最简二次根式 第三章位置与坐标 1、确定位置 在平面内,确定一个物体的位置一般需要两个数据 2、平面直角坐标系 含义:在平面内,两条相互垂直且有公共原点的数轴组成平面直角坐标系 通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公
6、共原点o被称为直角坐标系的原点 建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示 在平面直角坐标系中,两条坐标轴将坐标平面分成了四局部,右上方的局部叫第一象限,其他三局部按逆时针方向叫做其次象限,第三象限,第四象限,坐标轴上的点不在任何一个象限 在直角坐标系中,对于平面上任意一点,都有唯一的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上唯一的一点与它对应 3、轴对称与坐标变化 关于x轴对称的两个点的坐标,横坐标一样,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标一样,横坐标互为相反数 第四章一次函数 1、函数 一般地,假如在一个变化过程中有两
7、个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数其中x是自变量 表示函数的方法一般有:列表法、关系式法和图象法 对于自变量在可取值范围内的一个确定的值a,函数有唯一确定的对应值,这个对应值称为当自变量等于a的函数值 2、一次函数与正比例函数 若两个变量x,y间的对应关系可以表示成y=kx+b(k、b为常数,k0)的形式,则称y是x的一次函数,特殊的,当b=0时,称y是x的正比例函数 3、一次函数的图像 正比例函数y=kx的图像是一条经过原点(0,0)的直线。因此,画正比例函数图像是,只要再确定一点,过这个点与原点画直线就可以了 在正比例函数y=kx中,
8、当k0时,y的值随着x值的增大而减小;当k0时,y的值随着x值的增大而增大;当k0时,y的值随着x值的增大而减小 4、一次函数的应用 一般地,当一次函数y=kx+b的函数值为0时,相应的自变量的值就是方程kx+b=0的解,从图像上看,一次函数y=kx+b的图像与x轴交点的横坐标就是方程kx+b=0 第五章二元一次方程组 1、熟悉二元一次方程组 含有两个未知数,并且所含有未知数的项的次数都是1的方程叫做二元一次方程 共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解 2、求解二元一次方程组 将其中一个方程中的某个未知数
9、用含有另一个未知数的代数式表示出来,并代入另个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代入消元法,简称代入法 通过两式子加减,消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法 3、应用二元一次方程组 鸡兔同笼 4、应用二元一次方程组 增减收支 5、应用二元一次方程组 里程碑上的数 6、二元一次方程组与一次函数 一般地,以一个二元一次方程的解为坐标的点组成的图像与相应的一次函数的图像一样,是一条直线 一般地,从图形的角度看,确定两条直线相交点的坐标,相当于求相应的二元一次方程组的解,解一个二元一次方程组相当于确定相应两条直线交点的
10、坐标 7、用二元一次方程组确定一次函数表达式 先设出函数表达式,再依据所给条件确定表达式中未知的系数,从而得到函数表达式的方法,叫做待定系数法。 8、三元一次方程组 在一个方程组中,各个式子都含有三个未知数,并且所含有未知数的项的次数都是1,这样的方程叫做三元一次方程 像这样,共含有三个未知数的三个一次方程所组成的一组方程,叫做三元一次方程组 三元一次方程组中各个方程的公共解,叫做这个三元一次方程组的解。 第六章数据的分析 1、平均数 一般地,对于n个数x1x2.xn,我们把(x1+x2+xn)叫做这n个数的算数平均数,简称平均数记为。 在实际问题中,一组数据里的各个数据的“重要程度”未必一样
11、,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数 2、中位数与众数 中位数:一般地,n个数据按大小挨次排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数 一组数据中消失次数最多的那个数据叫做这组数据的众数 平均数、中位数和众数都是描述数据集中趋势的统计量 计算平均数时,全部数据都参与运算,它能充分地利用数据所供应的信息,因此在现实生活中较为常用,但他简单受极端值影响。 中位数的优点是计算简洁,受极端值影响较小,但不能充分利用全部数据的信息 各个数据重复次数大致相等时,众数往往没有特殊意义 3、从统计图分析数据的集中趋势 4、数据的离散程度 实际
12、生活中,除了关怀数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离状况。一组数据中最大数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量 数学上,数据的离散程度还可以用方差或标准差刻画 方差是各个数据与平均数差的平方的平均数 其中是x1x2.xn平均数,s2是方差,而标准差就是方差的算术平方根 一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。 第七章平行线的证明 1、为什么要证明 试验、观看、归纳得到的结论可能正确,也可能不正确,因此,要推断一个数学结论是否正确,仅仅依靠试验、观看、归纳是不够的,必需进展有根有据的证明 2、定义与命题 证明时,
13、为了沟通便利,必需对某些名称和术语形成共同的熟悉,为此,就要对名称和术语的含义加以描述,做出明确的规定,也就是给它们的定义 推断一件事情的句子,叫做命题 一般地,每个命题都由条件和结论两局部组成。条件是已知的选项,结论是已知选项推出的事项。命题通常可以写成“假如.那么.”的形式,其中“假如”引出的局部是条件,“那么”引出的局部是结论 正确的命题称为真命题,不正确的命题称为假命题 要说明一个命题是假命题,经常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例 欧几里得在编写原本时,选择了一局部数学名词和一局部公认的真命题作为证明其他命题的动身点和依据。其中数学名词称为原名
14、,公认的真命题称为公理,除了公理外,其他命题的真假都需要通过演绎推理的方法进展推断 演绎推理的过程称为证明,经过证明的真命题称为定理,每个定理都只能用公理、定义和已经证明为真的命题来证明 a.本套教科书选用九条根本事实作为证明的动身点和依据,其中八条是:两点确定一条直线 b.两点之间线段最短 c.同一平面内,过一点有且只有一条直线与已知直线垂直 d.两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行(简述为:同位角相等,两直线平行) e.过直线外一点有且只有一条直线与这条直线平行 f.两边及其夹角分别相等的两个三角形全等 g.两角及其夹边分别相等的两个三角形全等 h.三边分别相等的两
15、个三角形全等 此外,数与式的运算律和运算法则、等式的有关性质,以及反映大小关系的有关性质都可以作为证明的依据 定理:同角(等角)的补角相等 同角(等角)的余角相等 三角形的任意两边之和大于第三边 对顶角相等 3、平行线的判定 定理:两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行,简述为:内错角相等,两直线平行 定理:两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行,简述为:同旁内角互补,两直线平行。 4、平行线的性质 定理:两条平行直线被第三条直线所截,同位角相等。简述为:两直线平行,同位角相等 定理:两条平行直线被第三条直线所截,内错角相等。简述为:两直线平行,内错角相等 定理:两条平行直线被第三条直线所截,同旁内角互补。简述为:两直线平行,同旁内角互补 定理:平行于同一条直线的两条直线平行 5、三角形内角和定理 三角形内角和定理:三角形的内角和等于180 定理:三角形的一个外角等于和它不相邻的两个内角的和 定理:三角形的一个外角大于任何一个和它不相邻的内角 我们通过三角形的内角和定理直接推导出两个新定理。像这样,由一个根本事实或定理直接推出的定理,叫做这个根本事实或定理的推论,推论可以当定理使用。