《《函数的奇偶性》课件(1).ppt》由会员分享,可在线阅读,更多相关《《函数的奇偶性》课件(1).ppt(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 在日常生活中,有非常多的轴对称现象,在日常生活中,有非常多的轴对称现象,如人与镜中的影关于镜面对称,请同学们举几如人与镜中的影关于镜面对称,请同学们举几个例子。个例子。除了轴对称外,有除了轴对称外,有些是关于某点对称,如些是关于某点对称,如风扇的叶子,如图:风扇的叶子,如图:它关于什么对称?它关于什么对称?xy0观察下图,思考并讨论以下问题:观察下图,思考并讨论以下问题:(1)这两个函数图象有什么共同特征吗?(2)相应的两个函数值对应表是如何体现这些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=
2、f(1)f(x)=x2f(x)=|x|实际上,对于实际上,对于R内任意的一个内任意的一个x,都有都有f(-x)=(-x)2=x2=f(x),这时我们称函数这时我们称函数y=x2为为偶函数偶函数.1偶函数偶函数 一般地,对于函数一般地,对于函数f(x)的定义域内的任意一个的定义域内的任意一个x,都有都有f(x)=f(x),那么,那么f(x)就叫做就叫做偶函数偶函数 例如,函数 都是偶函数,它们的图象分别如下图(1)、(2)所示.观察函数观察函数f(x)=x和和f(x)=1/x的图象的图象(下图下图),你能发,你能发现现两个函数图象有什么共同特征吗?两个函数图象有什么共同特征吗?f(-3)=-3=
3、-f(3)f(-2)=-2=-f(2)f(-1)=-1=-f(1)实际上,对于实际上,对于R内任意的一个内任意的一个x,都有都有f(-x)=-x=-f(x),这时这时我们称函数我们称函数y=x为为奇函数奇函数.f(-3)=-1/3=-f(3)f(-2)=-1/2=-f(2)f(-1)=-1=-f(1)2奇函数奇函数 一般地,对于函数一般地,对于函数f(x)的定义域内的任意一个的定义域内的任意一个x,都有都有f(x)=f(x),那么,那么f(x)就叫做就叫做奇奇函数函数 注意:注意:1 1、函数是奇函数或是偶函数称为函数的奇偶性,、函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的函数
4、的奇偶性是函数的整体性质整体性质;2 2、由函数的奇偶性定义可知,函数具有奇偶性的、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个一个必要条件是,对于定义域内的任意一个x,则,则x也一定是定义域内的一个自变量(即也一定是定义域内的一个自变量(即定义域关定义域关于原点对称于原点对称)3 3、奇、偶函数定义的逆命题也成立,即、奇、偶函数定义的逆命题也成立,即 若若f(x)f(x)为奇函数,则为奇函数,则f(-x)=-f(x)有成立有成立.若若f(x)f(x)为偶函数,则为偶函数,则f(-x)=f(x)有成立有成立.4、如果一个函数、如果一个函数f(x)是奇函数或偶函
5、数,那么我是奇函数或偶函数,那么我们就说函数们就说函数f(x)具有具有奇偶性奇偶性.例5、判断下列函数的奇偶性:(1)解:定义域为R f(-x)=(-x)4=f(x)即f(-x)=f(x)f(x)偶函数(2)解:定义域为R f(-x)=(-x)5=-x5=-f(x)即f(-x)=-f(x)f(x)奇函数(3)解:定义域为x|x0 f(-x)=-x+1/(-x)=-f(x)即f(-x)=-f(x)f(x)奇函数(4)解:定义域为x|x0 f(-x)=1/(-x)2=f(x)即f(-x)=f(x)f(x)偶函数 (5).f(x)=x2 x-1,3解:(6)定义域不关于原点 对 称 f(x)为非奇非
6、偶函数ox-13y 奇函数奇函数 说明:说明:根据奇偶性根据奇偶性,偶函数偶函数 函数可划分为四类函数可划分为四类:既奇又偶函数既奇又偶函数 非奇非偶函数非奇非偶函数3.用定义判断函数奇偶性的步骤:(1)、先求定义域,看是否关于原点对称;、先求定义域,看是否关于原点对称;(2)、再判断、再判断f(-x)=-f(x)或或f(-x)=f(x)是否恒成立是否恒成立.课堂练习判断下列函数的奇偶性:判断下列函数的奇偶性:、性质:奇函数的图象关于原点对称。、性质:奇函数的图象关于原点对称。偶函数的图象关于偶函数的图象关于y轴对称。轴对称。、如果一个函数的图象关于、如果一个函数的图象关于原点对称原点对称,那
7、么,那么这个函数是这个函数是奇函数奇函数。如果一个函数的图象关于如果一个函数的图象关于y轴对称轴对称,那么,那么这个函数是这个函数是偶函数偶函数。3.奇偶函数图象的性质注:奇偶函数图象的性质可用于:注:奇偶函数图象的性质可用于:.判断函数的奇偶性。判断函数的奇偶性。.简化函数图象的画法。简化函数图象的画法。.求函数的解析式求函数的解析式 .判断函数的单调性判断函数的单调性例例3、已知函数、已知函数y=f(x)是偶函数,它在是偶函数,它在y轴右边的图轴右边的图象如下图,画出在象如下图,画出在y轴左边的图象轴左边的图象.xy0解:画法略相等相等xy0相等相等本课小结1、两个定义:对于f(x)定义域
8、内的任意一个x,如果都有f(x)=-f(x)f(x)为奇函数为奇函数 如果都有f(x)=f(x)f(x)为偶函数为偶函数2、两个性质:一个函数为奇函数 它的图象关于原点对称 一个函数为偶函数 它的图象关于y轴对称2.2.奇偶函数图象的性质奇偶函数图象的性质:奇函数的图象关于原点对称奇函数的图象关于原点对称.反过来反过来,如果一个函数的图象关于原点对称如果一个函数的图象关于原点对称,那么这个函数为奇函数那么这个函数为奇函数.偶函数的图象关于偶函数的图象关于y轴对称轴对称.反过来反过来,如果一个函数的图象关于如果一个函数的图象关于y轴对称轴对称,那么这个函数为偶函数那么这个函数为偶函数.注:奇偶函数图象的性质可用于:注:奇偶函数图象的性质可用于:.判断函数的奇偶性。判断函数的奇偶性。.简化函数图象的画法。简化函数图象的画法。.求函数的解析式求函数的解析式 .判断函数的单调性判断函数的单调性注:奇偶函数图象的性质可用于:注:奇偶函数图象的性质可用于:.判断函数的奇偶性。判断函数的奇偶性。.简化函数图象的画法。简化函数图象的画法。.求函数的解析式求函数的解析式 .判断函数的单调性判断函数的单调性课外思考题课外思考题:1.设y=f(x)为R上的任一函数,判断下列函数的奇偶性:(1).F(x)=f(x)+f(-x)(2).F(x)=f(x)-f(-x)2.判断函数 的奇偶性: