《2023年东北三省高三第二次联合模拟考试含答案(五科试卷).pdf》由会员分享,可在线阅读,更多相关《2023年东北三省高三第二次联合模拟考试含答案(五科试卷).pdf(73页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2023 年东北三省高三第二次联合模拟考试含答案(五科试卷)目录1.2023 年东北三省高三第二次联合模拟考试理综含答案2.2023 年东北三省高三第二次联合模拟考试数学含答案3.2023 年东北三省高三第二次联合模拟考试文综含答案4.2023 年东北三省高三第二次联合模拟考试英语含答案5.2023 年东北三省高三第二次联合模拟考试语文含答案三省三校第二次模拟答案 一、单选题 题号 1 2 3 4 5 6 7 8 答案 D C B B C D C D 二、多选题 题号 9 10 11 12 答案 AD ACD ACD BCD 三、填空题:13、8730 14、2 15、153 16、1 8.2
2、ln2lnccaa 考虑:()2ln(0)f xxx x,则22()1xfxxx ()f x在(0,2)递减;()f x在(2,)递增 min()(2)2(1 ln2)0f xf(1)当02,2ac时,215ba 设21()()()55xxg x,是减函数,且(2)1g 21()()()(2)1521555baaaag agba 25212152bab 所以,2|2|cbaacb(2)当02,2ca时,同理可得:2|2|abcacb 综上可得:|2|acb成立.12.如图:(1)在第一象限+都是凹函数(二阶导数大于零)(2)图二、图三有过原点的切线(3)极值点的个数是一个或两个(4)当,m n
3、同奇数或同偶数时,()|()|f xfx;当,m n是一奇,一偶数时,()|()|f xfx;15.设112200(,),(,),(,)M x yN xyP xy 2211222222222200MNOPxybabkkaxyab,则 OP 的方程为222byxa,MN 的方程为:2()yxc 2222()byxayxc2224115345Pa cxcOPeab 16.A B C D E A 无 负 负 胜 胜 B 胜 无 胜 平局 平局 C 胜 负 无 胜 胜 D 负 平局 负 无 负 E 负 平局 负 胜 无 A 队:2 胜 2 负(无平局)C 对:3 胜 1 负(无平局)B 队:2 胜 2
4、 平,则 B 队和 D、E 是平局;B 队胜了 A、C 这样找到了 C 队负的一场,输给 B 队 这样 B、C 结束;A 队赢 D、E 最后,E 胜 D,则 D 的 1 分.四、解答题 17.(本题满分 10 分)(1)证明:22222(1 cos)4(1)42bcabcAabcabc 22()9bca,则3bca 5(2)由余弦定理得:2222 cosabcbA,则9bc,又3bca,则3bc 由角分线可得,95AD 所以,在ABD中,由余弦定理得:2222cosBDADcAD cA,4 65BD 10 18.(本题满分 12 分)(1)记:事件A “业主对物业工作表示满意”,则 23 16
5、03()()55 21004P AP A 所以,35003754(人)4 答:该小区业主对物业工作表示满意的人数约为 375 人.(2)(i)332445505551212117()()()()3333381PCCC 8(ii)设至少要访谈n位业主 3173810(1)2(80%)10047.6481417nn 答:至少要访谈 48 为业主.12 2DCBA19.(本题满分 12 分)(1)证明:等腰梯形ABCD中,2,1ABBCCDAD 则,060ABC 2 1BCACBCBCAA平面11AACC,BC 平面ABCD,则平面ABCD平面11AACC,4(2)建立如图所示空间直角坐标系Cxyz
6、,则 3(3,0,0),(0,1,0),(,0,0)2ABO,131131(,0,),(,0)22222ACDBA 1111133311 1(,0),(,0,),(0,)22222 2B DBDDDAAD 设111333131(,0),(,)222222D MD BM,6 设平面MBC的法向量为(,)nx y z 3131()022220n CMyzn CBy,取1x,则(1,0,3)n 8 取平面ABCD的法向量(0,0,1)m 2|21|cos,|417|m nm nm n,则12 即:13 3 13(,0),(1,0,)442AMn 10 设直线1AM与平面MBC所成的角为,则 111|
7、3sin|cos,|37|AM nAM nAMn 所以,直线1AM与平面MBC所成的角正弦值为3 37.12 20.(本题满分 12 分)(1)()()()kijij mjk mki mc()()()kjiji mik mkj mc 所以,0c 当2nnb 时,123142,3,3mmm 1426(1 2)(23)2(3 1)3033 所以,nb不是“梦想数列”4(2)21,21,21ijkaiajak 222()()()0kijijjkkikij 所以,nc不是“梦想数列”6(3)令1,2,3ijk 123112(1 2)(23)(3 1)0312aaaaaa 所以,1322aaa,即:12
8、3aaa、成等差数列 8 令1,2,(3)ijkn n 21(1 2)(2)(1)02nSSn ann 2122(3)(1)0nSnn an na 21122(2)(1)0nSnnan na 所以,11121122220nnanaanaaand 所以,1(1)(4)naand n,当1,2,3n时也成立.综上可得,“梦想数列”na是等差数列.12 21.(本题满分 12 分)(1)椭圆方程:22221(0)xyabab 2 21334223cbaaba,所以,222121:1,:194xCyCyx 4(2)设直线l的方程为ykx,1122(,),(,)A x yB x y 22440114yk
9、xxkxyx,则121244xxkxx 6 又1112112111,4164yxx xkk kx 联立122114014yk xxk xxy,则114xk,同理:224xk 联立12211221(91)180990yk xkxk xxy 13211891kxk,同理:24221891kxk 8 2211221|sin42(91)(91)181|sin2MA MBAMBSkkSMD MEDME 10 21214 819169(1 9)81 1616324kk,当且仅当112k 时,取等号 所以,12SS的最小值为169324.12 22.(本题满分 12 分)(1)()f x的定义域为(0,)1
10、1()1fxaxx 设切点坐标000(,ln1)xxx,则切线方程为:00001(ln1)(1)()yxxxxx 把点(0,0)带入切线得:20 xe 所以,()f x的切线方程为:221 eyxe 4(2)()(ln1)axg xxexax有两个不同零点,则 ln(ln1)0(ln)1(ln)10axx axaxxxexaxxaxexaxe 6 构造函数()1,()1xxu xexu xe ()u x为(,)增函数,且(0)0u 即:ln0 xax有两个不等实根 1122lnlnaxxaxx 令1122ln,(01)lnxxttxx,则1212lnln,lnlnlnxtxxxt122ln2lnln1txxtt8设22212()ln(01),()3ln1(1)xxxv xxxv xxxxx设22(1)(2)()3ln1,()xxxxxxxx()x在(0,1)递增,(1)0,则()v x在(0,1)递减,且(1)0v 所以,()v x的最小值(1)v,1011(2)lnlim(2)ln)|31xxxxxxx所以,()v x的最小值为 3,即:m的取值范围为(,3.12