《2.2.2公式法.ppt》由会员分享,可在线阅读,更多相关《2.2.2公式法.ppt(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、公式法问题:如果一个一元二次方程是一般形式ax2+bx+c=0(a0),你能否用配方法求出它们的两根?解:移项,得:ax2+bx=-c 二次项系数化为1,得x2+x=-即(x+)2=若b2-4ac0且4a20则0配方,得:x2+x+()2=-+()2 2公式法直接开平方,得:x+=即x=x1=x2=公式法归纳:一元二次方程ax2+bx+c=0(a0)的根由方程的系数a、b、c而定,因此:(2)这个式子叫做一元二次方程的求根公式(3)利用求根公式解一元二次方程的方法叫公式法(4)由求根公式可知,一元二次方程最多有两个实数根.(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当
2、b-4ac0时,将a、b、c代入式子x=就得到方程的根.2 2公式法例例2 2用公式法解下列方程:(1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0解:(1)a=2,b=-4,c=-1 b2-4ac=(-4)2-42(-1)=240 x=x1=,x2=公式法(2)将方程化为一般形式 3x2-5x-2=0 a=3,b=-5,c=-2b2-4ac=(-5)2-43(-2)=490 x=x1=2,x2=-.公式法x1=,x2=归纳:(1)当b-4ac0时,一元二次方程ax2+bx+c=0有两个不等实数根:2 2(2)当b-4ac=0时,一
3、元二次方程ax2+bx+c=0有两个相等实数根:x1=x2=2 2(3)当b-4ac0,2方程x2+4x+6=0的根是()A x1=,x2=B x1=6,x2=C x1=2 ,x2=D 没有实数根公式法1用公式法解方程4x2-12x=3,得到()A x=B x=C x=D x=3(m2-n2)(m2-n2-2)-8=0,则m2-n2的值()A 4 B -2 C 4或-2 D -4或2D DD DC C4一元二次方程ax2+bx+c=0(a0)的求根公式是_ _,条件是 .公式法x=b b2 2-4ac0-4ac05当x=_时,代数式x2-8x+12的值是-44 46若关于x的一元二次方程(m-
4、1)x2+x+m2+2m-3=0有一根为0,则m的值是_-3-37用公式法解关于x的方程:x2-2ax-b2+a2=0公式法 9某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时 元收费.8设x1,x2是一元二次方程ax2+bx+c=0(a0)的两根,(1)试推导x1+x2=-,x1x2=;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值公式法(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)(2)下表是这户居民3月、4月的用电情况和交费情况月份 用电量(千瓦时)交电费总金额(元)3 80 25 4 45 10根据上表数据,求电厂规定的A值为多少?本节课应掌握:公式法(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程;(4)初步了解一元二次方程根的情况.