高中数学 1.4《全称量词与存在量词》课件二 新人教A版选修2-1.ppt

上传人:gsy****95 文档编号:85131995 上传时间:2023-04-10 格式:PPT 页数:13 大小:264KB
返回 下载 相关 举报
高中数学 1.4《全称量词与存在量词》课件二 新人教A版选修2-1.ppt_第1页
第1页 / 共13页
高中数学 1.4《全称量词与存在量词》课件二 新人教A版选修2-1.ppt_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《高中数学 1.4《全称量词与存在量词》课件二 新人教A版选修2-1.ppt》由会员分享,可在线阅读,更多相关《高中数学 1.4《全称量词与存在量词》课件二 新人教A版选修2-1.ppt(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1.4 全称量词与存在量词全称量词与存在量词P21 思考:下列语句是命题吗?下列语句是命题吗?(1)与与(3),(2)与与(4)之间有什么关系?之间有什么关系?(1)x3;(2)2x+1是整数;是整数;(3)对所有的对所有的x R,x3;(4)对任意一个对任意一个x Z,2x+1是整数是整数。语句语句(1)(2)(1)(2)不能判断真假,不是命题;不能判断真假,不是命题;语句语句(3)(4)(3)(4)可以判断真假,是命题。可以判断真假,是命题。全称量词、全称命题定义:全称量词、全称命题定义:短语短语“所有的所有的”“任意一个任意一个”在逻辑中通常叫做全称量词,并在逻辑中通常叫做全称量词,并用

2、符号用符号“”表示。表示。含有全称量词的命题,叫做全称命题。含有全称量词的命题,叫做全称命题。常见的全称量词还有常见的全称量词还有“一切一切”“每一个每一个”“任给任给”“所有的所有的”等等。全称命题举例:全称命题举例:全称命题符号记法:全称命题符号记法:命题:对任意的nZ,2n+1是奇数;所有的正方形都是矩形。通常,将含有变量通常,将含有变量x的语句用的语句用p(x),q(x),r(x),表示,变量表示,变量x的取值范围用的取值范围用M表示,那么,表示,那么,全称命题全称命题“对对M中任意一个中任意一个x,有,有p(x)成立成立”可用符号简记为:可用符号简记为:读作读作“对任意对任意x属于属

3、于M,有,有p(x)成立成立”。解:解:(1)假命题;)假命题;(2)真命题;)真命题;(3)假命题。)假命题。例例1 判断下列全称命题的真假:判断下列全称命题的真假:(1)所有的素数都是奇数;所有的素数都是奇数;(2)(3)对每一个无理数)对每一个无理数x,x2也是无理数。也是无理数。小小 结:结:需要对集合需要对集合M中每个元素中每个元素x,证明,证明p(x)成立成立只需在集合只需在集合M中找到一个元素中找到一个元素x0,使得,使得p(x0)不成立即可不成立即可 (举反例)(举反例)P23 P23 练习:练习:1 判断下列全称命题的真假:判断下列全称命题的真假:(1)每个指数函数都是单调函

4、数;)每个指数函数都是单调函数;(2)任何实数都有算术平方根)任何实数都有算术平方根;(3)P22 思考:下列语句是命题吗?下列语句是命题吗?(1)与与(3),(2)与与(4)之间有什么关系?之间有什么关系?(1)2x+1=3;(2)x能被能被2和和3整除;整除;(3)存在一个存在一个x0 R,使,使2x+1=3;(4)至少有一个至少有一个x0 Z,x能被能被2和和3整除。整除。语句语句(1)(2)(1)(2)不能判断真假,不是命题;不能判断真假,不是命题;语句语句(3)(4)(3)(4)可以判断真假,是命题。可以判断真假,是命题。存在量词、特称命题定义:存在量词、特称命题定义:短语短语“存在

5、一个存在一个”“至少有一个至少有一个”在逻辑中通常叫做存在量在逻辑中通常叫做存在量词,词,并用符号并用符号“”表示。表示。含有存在量词的命题,叫做特称命题。含有存在量词的命题,叫做特称命题。常见的存在量词还有常见的存在量词还有“有些有些”“有一个有一个”“对某个对某个”“有的有的”等等。特称命题举例:特称命题举例:特称命题符号记法:特称命题符号记法:命题:有的平行四边形是菱形;命题:有的平行四边形是菱形;有一个素数不是奇数。有一个素数不是奇数。通常,将含有变量通常,将含有变量x的语句用的语句用p(x),q(x),r(x),表示,变量表示,变量x的取值范围用的取值范围用M表示,那么,表示,那么,

6、特称命题特称命题“存在存在M中的一个中的一个x0,使,使p(x0)成立成立”可用符号简记为:可用符号简记为:读作读作“存在一个存在一个x0属于属于M,使,使p(x0)成立成立”。解:解:(1)假命题;)假命题;(2)假命题;)假命题;(3)真命题。)真命题。例例2 判断下列特称命题的真假:判断下列特称命题的真假:(1)有一个实数)有一个实数x0,使,使x02+2x0+3=0;(2)存在两个相交平面垂直于同一条直线;)存在两个相交平面垂直于同一条直线;(3)有些整数只有两个正因数。)有些整数只有两个正因数。小小 结:结:需要证明集合需要证明集合M中,使中,使p(x)成立的元素成立的元素x不存在。

7、不存在。只需在集合只需在集合M中找到一个元素中找到一个元素x0,使得,使得p(x0)成立即可成立即可 (举例证明)(举例证明)P23 P23 练练 习:习:2 判断下列特称命题的真假:判断下列特称命题的真假:(1)(2)至少有一个整数,它既不是合数,也不是素数;)至少有一个整数,它既不是合数,也不是素数;(3)解:解:(1)真命题;)真命题;(2)真命题;)真命题;(3)真命题。)真命题。练习 (2)存在这样的实数它的平方等于它本身。)存在这样的实数它的平方等于它本身。(3)任一个实数乘以)任一个实数乘以-1都等于它的相反数;都等于它的相反数;(4)存在实数)存在实数x,x3x2;3、用符号、

8、用符号“”与与“”表达下列命表达下列命题:题:(1)实数都能写成小数形式;)实数都能写成小数形式;小结:2 2、全称命题的符号记法。、全称命题的符号记法。1、全称量词、全称命题的定义。、全称量词、全称命题的定义。3、判断全称命题真假性的方法。、判断全称命题真假性的方法。4、存在量词、特称命题的定义。、存在量词、特称命题的定义。5、特称命题的符号记法。、特称命题的符号记法。6、判断特称命题真假性的方法。、判断特称命题真假性的方法。同一全称命题、特称命题,由于自然语言的不同,可能有不同的表述方法:命题命题 全称命题全称命题特称命题特称命题所有的所有的x M,p(x)成立成立对一切对一切x M,p(x)成立成立对每一个对每一个x M,p(x)成成 立立任选一个任选一个x M,p(x)成成 立立凡凡x M,都有,都有p(x)成立成立存在存在x0 M,使,使p(x)成立成立至少有一个至少有一个x0 M,使,使 p(x)成立成立对有些对有些x0 M,使,使p(x)成成 立立对某个对某个x0 M,使,使p(x)成成 立立有一个有一个x0 M,使,使p(x)成成 立立表表述述方方法法作业1、P31第第5题。题。2、设、设a、b、c均为非零实数,求证:方均为非零实数,求证:方程程 ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0中至少有一个有实数根。中至少有一个有实数根。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 生活常识

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁