《概率论 第四章大数定律与中心极限定理优秀课件.ppt》由会员分享,可在线阅读,更多相关《概率论 第四章大数定律与中心极限定理优秀课件.ppt(35页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、概率论 第四章大数定律与中心极限定理第1页,本讲稿共35页4.1 特征函数特征函数是处理概率论问题的有力工具,其作用在于:可将卷积运算化成乘法运算;可将求各阶矩的积分运算化成微分运算;可将求随机变量序列的极限分布化成一般的函数极限问题;.第2页,本讲稿共35页4.1.14.1.1 特征函数的定义定义4.1.1 设 X 是一随机变量,称(t)=E(eitX)为 X 的特征函数.(必定存在)注意:是虚数单位.第3页,本讲稿共35页注 意 点(1)(1)(1)当X为离散随机变量时,(2)当X为连续随机变量时,这是 p(x)的傅里叶变换第4页,本讲稿共35页特征函数的计算中用到复变函数,为此注意:注注
2、 意意 点点(2)(1)欧拉公式:(2)复数的共轭:(3)复数的模:第5页,本讲稿共35页 性质4.1.1 4.1.2 特征函数的性质|(t)|(0)=1 性质4.1.2 性质4.1.3 性质4.1.4 若 X 与 Y 独立,则 性质4.1.5 第6页,本讲稿共35页 定理4.1.1 特征函数的定理一致连续性.定理4.1.2 定理4.1.3 定理4.1.4 唯一性.定理4.1.5 非负定性.逆转公式.连续场合,第7页,本讲稿共35页4.2 大数定律 讨论“概率是频率的稳定值”的确切含义;给出几种大数定律:伯努利大数定律、切比雪夫大数定律、马尔可夫大数定律、辛钦大数定律.第8页,本讲稿共35页4
3、.2.1 伯努利大数定律大数定律定理4.2.1(伯努利大数定律)设 n 是n重伯努利试验中事件A出现的次数,每次试验中 P(A)=p,则对任意的 0,有第9页,本讲稿共35页4.2.2 常用的几个大数定律 大数定律一般形式:若随机变量序列Xn满足:则称Xn 服从大数定律.第10页,本讲稿共35页切比雪夫大数定律 定理4.2.2Xn两两不相关,且Xn方差存在,有共同的上界,则 Xn服从大数定律.证明用到切比雪夫不等式.第11页,本讲稿共35页马尔可夫大数定律马尔可夫大数定律 定理4.2.3若随机变量序列Xn满足:则 Xn服从大数定律.(马尔可夫条件)第12页,本讲稿共35页辛钦大数定律辛钦大数定律 定理4.2.4若随机变量序列Xn独立同分布,且Xn的数学期望存在。则 Xn服从大数定律.第13页,本讲稿共35页(1)伯努利大数定律是切比雪夫大数定律的特例.注 意 点(2)切比雪夫大数定律是马尔可夫大数定律的特例.(3)伯努利大数定律是辛钦大数定律的特例.第14页,本讲稿共35页