《广义相对论第九次作业23082.pdf》由会员分享,可在线阅读,更多相关《广义相对论第九次作业23082.pdf(2页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 广义相对论基础第九次作业答案 一、已知;,AAA ,利用标量微分关系;,UU及莱布尼兹法则证明:;,BBB。证明:由莱布尼兹法则,有;()A BABA B,,()A BABA B,而;,UU,故;,ABA BABA B 。把;,AAA 代入上式,得,;,()AA BA BABA B ,整理,得;,A BA BAB,即 ;,BBB。二、在宇宙学中,均匀各向同性介质的能量动量张量采用形式 ()Tp u upg,由能量动量张量满足;0T,可导出一个微分方程 3()dapdta。试从此方程出发导出 32()3dapada,并讨论实物为主的宇宙(p)满足3matteraconst,辐射为主宇宙(/3p
2、)满足4radiationaconst。证明:33221()()33ddaapapadaadt 。而 332()3dadaa adtdt,因此 32233daa apa adt,即 3()dapdta。实物为主的宇宙满足p,因此可取0p,因此32()30dapada,即 3matteraconst。辐射为主的宇宙满足/3p,因此322()3dapaada ,即 4radiationaconst。三、由弗里德曼方程 2283GaKa,出发,考虑到 Hubble 定律()aH t a,对于今天的宇宙有 222000083GH aaK。请把上面的两个式子相减,并考虑到28/3cGH 及3matter
3、aconst,证明 01/2/221000000000()(1)(1)a aaaHtHdxaax ,进而讨论01 的情况下宇宙的寿命。证明:把2283GaKa和222000083GH aaK两式相减,得 2222200008833GGH aaaa,考虑到3300aa,上式可变为:222230000008833GGH aaaaa,考虑到0000208/3cGH,整理得 01/2/221000000000()(1)(1)a aaaHtHdxaax ,上式中我们把0/a a当一个宗量来处理。当把积分上限取为 1,相应的时间就是宇宙年龄,考虑01,得2/3003()()2H ta ta,因此现在宇宙的寿命为10023tH。