《2018年浙江省衢州市中考数学试卷.doc》由会员分享,可在线阅读,更多相关《2018年浙江省衢州市中考数学试卷.doc(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、QQ教研群:391979252;微信号:AA-teacher;公众号:数学第六感;公众号:数学资料库2018年浙江省衢州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1(3分)3的相反数是()A3B3CD2(3分)如图,直线a,b被直线c所截,那么1的同位角是()A2B3C4D53(3分)根据衢州市统计局发布的统计数据显示,衢州市2017年全市生产总值为138000000000元,按可比价格计算,比上年增长7.3%,数据138000000000元用科学记数法表示为()A1.381010元B1.381011元C1.381012元D0.1381012元4(3分)由五个大小相同的
2、正方体组成的几何体如图所示,那么它的主视图是()ABCD5(3分)如图,点A,B,C在O上,ACB=35,则AOB的度数是()A75B70C65D356(3分)某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是()A0BCD17(3分)不等式3x+25的解集是()Ax1BxCx1Dx18(3分)如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若AGE=32,则GHC等于()A112B110C108D1069(3分)如图,AB是圆锥的母线,BC为底面半径,已知BC=6cm,圆锥的侧面
3、积为15cm2,则sinABC的值为()ABCD10(3分)如图,AC是O的直径,弦BDAO于E,连接BC,过点O作OFBC于F,若BD=8cm,AE=2cm,则OF的长度是()A3cmBcmC2.5cmDcm二、填空题(本大题共6小题,每小题4分,共24分)11(4分)分解因式:x29= 12(4分)数据5,5,4,2,3,7,6的中位数是 13(4分)如图,在ABC和DEF中,点B,F,C,E在同一直线上,BF=CE,ABDE,请添加一个条件,使ABCDEF,这个添加的条件可以是 (只需写一个,不添加辅助线)14(4分)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家他
4、离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是 千米15(4分)如图,点A,B是反比例函数y=(x0)图象上的两点,过点A,B分别作ACx轴于点C,BDx轴于点D,连接OA,BC,已知点C(2,0),BD=2,SBCD=3,则SAOC= 16(4分)定义:在平面直角坐标系中,一个图形先向右平移a个单位,再绕原点按顺时针方向旋转角度,这样的图形运动叫作图形的(a,)变换如图,等边ABC的边长为1,点A在第一象限,点B与原点O重合,点C在x轴的正半轴上A1B1C1就是ABC经(1,180)变换后所得的图形若ABC经(1,180)变换后得A1B1C1,A1B1C1
5、经(2,180)变换后得A2B2C2,A2B2C2经(3,180)变换后得A3B3C3,依此类推An1Bn1Cn1经(n,180)变换后得AnBnCn,则点A1的坐标是 ,点A2018的坐标是 三、解答题(本大题共8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分)17(6分)计算:|2|+23(1)018(6分)如图,在ABCD中,AC是对角线,BEAC,DFAC,垂足分别为点E,F,求证:AE=CF19(6分)有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现
6、这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程方案二:方案三:20(8分)“五一”期间,小明到小陈家所在的美丽乡村游玩,在村头A处小明接到小陈发来的定位,发现小陈家C在自己的北偏东45方向,于是沿河边笔直的绿道l步行200米到达B处,这时定位显示小陈家C在自己的北偏东30方向,如图所示,根据以上信息和下面的对话,请你帮小明算一算他还需沿绿道继续直走多少米才能到达桥头D处(精确到1米)(备用数据:1.414,1.732)21(8分)为响应“学雷锋、树新风、做
7、文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图(1)被随机抽取的学生共有多少名?(2)在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;(3)该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?22(10分)如图,已知AB为O直径,AC是O的切线,连接BC交O于点F,取的中点D,
8、连接AD交BC于点E,过点E作EHAB于H(1)求证:HBEABC;(2)若CF=4,BF=5,求AC和EH的长23(10分)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系(1)求水柱所在抛物线(第一象限部分)的函数表达式;(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状
9、不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度24(12分)如图,RtOAB的直角边OA在x轴上,顶点B的坐标为(6,8),直线CD交AB于点D(6,3),交x轴于点C(12,0)(1)求直线CD的函数表达式;(2)动点P在x轴上从点(10,0)出发,以每秒1个单位的速度向x轴正方向运动,过点P作直线l垂直于x轴,设运动时间为t点P在运动过程中,是否存在某个位置,使得PDA=B?若存在,请求出点P的坐标;若不存在,请说明理由;请探索当t为何值时,在直线l上存在点M,在直线CD上存在点Q,使得以OB为一
10、边,O,B,M,Q为顶点的四边形为菱形,并求出此时t的值2018年浙江省衢州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1【解答】解:3的相反数是3,故选:A2【解答】解:由同位角的定义可知,1的同位角是4,故选:C3【解答】解:将138000000000用科学记数法表示为:1.381011故选:B4【解答】解:从正面看得到3列正方形的个数依次为2,1,1,故选:C5【解答】解:ACB=35,AOB=2ACB=70故选:B6【解答】解:某班共有42名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的
11、同学被选中的概率是:=故选:B7【解答】解:3x3x1故选:A8【解答】解:AGE=32,DGE=148,由折叠可得,DGH=DGE=74,ADBC,GHC=180DGH=106,故选:D9【解答】解:设圆锥的母线长为R,由题意得15=3R,解得R=5圆锥的高为4,sinABC=,故选:C10【解答】解:连接OB,AC是O的直径,弦BDAO于E,BD=8cm,AE=2cm,在RtOEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,OB=3+2=5,EC=5+3=8,在RtEBC中,BC=,OFBC,OFC=CEB=90,C=C,OFCBEC,即,解得:OF=,故选:
12、D二、填空题(本大题共6小题,每小题4分,共24分)11【解答】解:x29=(x+3)(x3)故答案为:(x+3)(x3)12【解答】解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数故答案为:513【解答】解:添加AB=ED,BF=CE,BF+FC=CE+FC,即BC=EF,ABDE,B=E,在ABC和DEF中,ABCDEF(SAS),故答案为:AB=ED14【解答】解:设当40t60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,图象经过(40,2)(60,0),解得:,y与t的函数关系式为y=x+6,当t=45时,y=45+6=1.5
13、,故答案为:1.515【解答】解:BDCD,BD=2,SBCD=BDCD=3,即CD=3,C(2,0),即OC=2,OD=OC+CD=2+3=5,B(5,2),代入反比例解析式得:k=10,即y=,则SAOC=5,故答案为:516【解答】解:根据图形的(a,)变换的定义可知:对图形(n,180)变换,就是先进行向右平移n个单位变换,再进行关于原点作中心对称变换ABC经(1,180)变换后得A1B1C1,A1 坐标(,)A1B1C1经(2,180)变换后得A2B2C2,A2坐标(,)A2B2C2经(3,180)变换后得A3B3C3,A3坐标(,)A3B3C3经(3,180)变换后得A4B4C4,
14、A4坐标(,)依此类推可以发现规律:An横坐标存在周期性,每3次变换为一个周期,纵坐标为当n=2018时,有20183=672余2所以,A2018横坐标是,纵坐标为故答案为:(,),(,)三、解答题(本大题共8小题,第17-19小题每小题6分,第20-21小题每小题6分,第22-23小题每小题6分,第24小题12分,共66分)17【解答】解:原式=23+81=618【解答】证明:如图,四边形ABCD是平行四边形,AB=CD,ABCD,BAE=DCF又BEAC,DFAC,AEB=CFD=90在ABE与CDF中,得ABECDF(AAS),AE=CF19【解答】解:由题意可得,方案二:a2+ab+(
15、a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2,方案三:a2+=a2+2ab+b2=(a+b)220【解答】解:如图所示:可得:CAD=45,CBD=60,AB=200m,则设BD=x,故DC=x,AD=DC,200+x=x,解得:x=100(+1)273,答:小明还需沿绿道继续直走273米才能到达桥头D处21【解答】解:(1)被随机抽取的学生共有1428%=50(人);(2)活动数为3项的学生所对应的扇形圆心角=360=72,活动数为5项的学生为:508141012=6,如图所示:(3)参与了4项或5项活动的学生共有2000=720(人)22【解答】解:(1)AC是O的
16、切线,CAAB,EHAB,EHB=CAB,EBH=CBA,HBEABC(2)连接AFAB是直径,AFB=90,C=C,CAB=AFC,CAFCBA,CA2=CFCB=36,CA=6,AB=3,AF=2,=,EAF=EAH,EFAF,EHAB,EF=EH,AE=AE,RtAEFRtAEH,AF=AH=2,设EF=EH=x,在RtEHB中,(5x)2=x2+()2,x=2,EH=223【解答】解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x3)2+5(a0),将(8,0)代入y=a(x3)2+5,得:25a+5=0,解得:a=,水柱所在抛物线(第一象限部分)的函数表达式为y=(x
17、3)2+5(0x8)(2)当y=1.8时,有(x3)2+5=1.8,解得:x1=1,x2=7,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内(3)当x=0时,y=(x3)2+5=设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=x2+bx+,该函数图象过点(16,0),0=162+16b+,解得:b=3,改造后水柱所在抛物线(第一象限部分)的函数表达式为y=x2+3x+=(x)2+扩建改造后喷水池水柱的最大高度为米24【解答】解:(1)设直线CD的解析式为y=kx+b,则有,解得,直线CD的解析式为y=x+6(2)如图1中,作DPOB,则PDA=BDPOB,=,=,PA
18、=,OP=6=,P(,0),根据对称性可知,当AP=AP时,P(,0),满足条件的点P坐标为(,0)或(,0)如图2中,当OP=OB=10时,作PQOB交CD于Q直线OB的解析式为y=x,直线PQ的解析式为y=x+,由,解得,Q(4,8),PQ=10,PQ=OB,PQOB,四边形OBQP是平行四边形,OB=OP,四边形OBQP是菱形,此时点M与的Q重合,满足条件,t=0如图3中,当OQ=OB时,设Q(m,m+6),则有m2+(m+6)2=102,解得m=,点Q 的横坐标为或,设点M的横坐标为a,则有:=或=,a=或,满足条件的t的值为或如图4中,当点Q与C重合时,M点的横坐标为6,此时t=16,综上所述,满足条件的t的值为0或16或或QQ教研群:391979252;微信号:AA-teacher;公众号:数学第六感;公众号:数学资料库