《甘肃省张掖市山丹县第一中学2019-2020学年高一上学期期末模拟考试试题数学【含答案】.pdf》由会员分享,可在线阅读,更多相关《甘肃省张掖市山丹县第一中学2019-2020学年高一上学期期末模拟考试试题数学【含答案】.pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、甘肃省张掖市山丹县第一中学2019-2020学年高一上学期期末模拟考试试题数学第卷一、选择题(本题共12 小题,每小题5 分,共 60 分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知全集UR,239xAx,02Byy,则有AABABABBCABRDABRR2下列四个图象中(如图),属于函数图象的是(1)(2)(3)(4)A(1)(2)B(1)(3)(4)C(2)(3)(4)D(1)(2)(3)(4)3利用二分法求方程log3x=5x的近似解,可以取得一个区间A(0,1)B(1,2)C(2,3)D(3,4)4若直线l1:ax+2y+6=0 与直线l2:x+(a1)y+5=0垂直,则
2、实数a的值是A23B1 C12D2 5直线xym与圆22(0)xym m相切,则mA12B22C2D2 6下列函数既是奇函数又在(0,)上单调递减的是A4()f xxB1()f xxxC2()lg(1)f xxxD3()f xx7直线l:(k+1)x(k1)y2k=0 恒过定点A(1,1)B(1,1)C(1,1)D(1,1)8如图,已知一个圆柱的底面半径为3,高为 2,若它的两个底面圆周均在球O的球面上,则球O的表面积为A323B16C8D49已知1.50.11.30.2,2,0.2abc,则,a b c的大小关系是AabcBacbCcabDbca10已知m,n是两条不同的直线,为两个不同的平
3、面,有下列四个命题:若m,n,mn,则;若m,n,mn,则;若m,n,mn,则;若m,n,则mn其中所有正确命题的序号是ABCD11函数111fxxx的最大值是A43B34C45D5412已知函数2ln1421fxxx,则1lg 2lg2ff等于A 1 B0 C1 D2 第卷二、填空题(本题共4 小题,每小题5 分,共 20 分)13函数2log1fxx的定义域是 _14若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为_15设f(x3)=lnx,则f(e)=_16函数122100 xxfxx x,满足f(x)1 的x的取值范围是_三、解答题(本大题共6 小题
4、,共70 分解答应写出文字说明、证明过程或演算步骤)17(本小题满分10 分)已知函数3,1,(),1xxf xx x,(1)求(1)ff的值;(2)求函数()f x的值域18(本小题满分12 分)(1)已知函数f(x)为二次函数,且f(x1)+f(x)=2x2+4,求f(x)的解析式;(2)已知f(x)满足123fxfxx,求f(x)的解析式19(本小题满分12 分)已知过点1,0P,且斜率为1的直线l,点13,2B,55,6C,在直线l上是否存在一点A,使ABBC?若存在,请求出点A的坐标;若不存在,请说明理由20(本小题满分12 分)如图,在直四棱柱ABCDA1B1C1D1中,点E为AB
5、1的中点,点F为A1D的中点(1)求证:EF平面ABCD;(2)求证:AA1EF21(本小题满分12 分)函数()f x 是定义在R上的偶函数,且对任意实数x,都有(1)(1)f xfx成立已知当1,2x时,()logaf xx(1)求0,1x时,函数()f x 的表达式;(2)若函数()f x 的最大值为12,在区间 1,3上,解关于x的不等式1()4f x22(本小题满分12 分)某家具厂生产一种办公桌,每张办公桌的成本为100 元,出厂单价为160 元,该厂为鼓励销售商多订购,决定一次订购量超过100 张时,每超过一张,这批订购的全部办公桌出厂单价降低1 元根据市场调查,销售商一次订购量
6、不会超过150 张(1)设一次订购量为x张,办公桌的实际出厂单价为P元,求P关于x的函数关系式P(x);(2)当一次性订购量x为多少时,该家具厂这次销售办公桌所获得的利润f(x)最大?其最大利润是多少元?(该家具厂出售一张办公桌的利润=实际出厂单价成本)答案1 2 3 4 5 6 7 8 9 10 11 12 A B D A D C B B B A A D 132,+)14193151316x1 17【解析】(1)因为3,1,(),1,xxf xxx,所以(1)3f,所以(1)(3)3fff(5 分)(2)当1x时,()3(0,3xf x,当1x时,()(,1)f xx,所以函数()f x的值
7、域为(,1)(0,3(10 分)18【解析】(1)设f(x)=ax2+bx+c(a0)a(x 1)2+b(x 1)+c+ax2+bx+c=2ax2+(2b2a)x+ab+2c=2x2+4 2222024abaabc,解得112abcf(x)=x2+x+2(6 分)(2)123fxfxx,用1x替换x得:132 ffxxx,消去1fx可得336fxxx,故120fxxxx(12 分)19【解析】假设存在,设点00,A xy点A在l上,0011yx,即001yx(4 分)由ABBC,得005116221353ABBCykkx,即0013322yx(9 分)由、解得02x,01y(12 分)20【解
8、析】(1)连接A1B,BD,在直四棱柱ABCDA1B1C1D1中,点E为AB1的中点,点E为A1B的中点,EFBD,又EF?平面ABCD,BD?平面ABCD,EF平面ABCD(6 分)(2)取AA1的中点G,连接GE,GF,AA1GE,AA1GF,且GEGF=G,AA1平面GEF,又EF?平面GEF,AA1EF(12 分)21【解析】(1)11fxfx,则fx图象关于1x对称,2log2,0,1afxfxxx故所求的表达式为log2,0,1afxxx(4 分)(2)fx是 R上的偶函数且fx图象关于1x对称,2fxfx,即函数fx是以 2 为周期,故只需考查区间1,1若1a时,由函数fx的最大
9、值为12知max10log 22affx,即4a,当01a时,则当11xx或时,fx有最大值,即1log212a,舍去,综上可得,4a(8 分)当1,1x时,若1,0 x,则41log24x,220 x,若0,1x,则41log24x,022x,此时满足不等式的解集为22,22fx是以 2 为周期的周期函数,当1,3x时,14fx的解集为2,42,综上,14fx的解集为22,222,42(12 分)22【解析】(1)P(x)1600100260100150 xxxxxNN,(4 分)(2)当 0 x100,f(x)=60 x,故x=100 时,f(x)max=f(100)=6000,当 100 x150 时,f(x)=(160 x)x=x2+160 x=(x80)2+6400,(8 分)f(x)在(100,150 上单调递减,故f(x)(100 80)2+6400=6000,综上所述,f(x)的最大值为6000答:当第一次订购量为100 张时,该家具厂在这次订购中所获得的利润最大,其最大利润是6000 元(12 分)