(完整word版)必修四第一章三角函数知识点及练习讲义.pdf

上传人:H****o 文档编号:83125696 上传时间:2023-03-28 格式:PDF 页数:11 大小:245.17KB
返回 下载 相关 举报
(完整word版)必修四第一章三角函数知识点及练习讲义.pdf_第1页
第1页 / 共11页
(完整word版)必修四第一章三角函数知识点及练习讲义.pdf_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《(完整word版)必修四第一章三角函数知识点及练习讲义.pdf》由会员分享,可在线阅读,更多相关《(完整word版)必修四第一章三角函数知识点及练习讲义.pdf(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高一数学下必修四第一章三角函数正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角第一象限角的集合为36036090,kkk第二象限角的集合为36090360180,kkk第三象限角的集合为360180360270,kkk第四象限角的集合为360270360360,kkk终边在x轴上的角的集合为180,kk终边在y轴上的角的集合为18090,kk终边在坐标轴上的角的集合为90,kk3、与角终边相同的角的集合为360,kk4、已知是第几象限角,确定*nn所在象限的方

2、法:先把各象限均分n等份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为n终边所落在的区域5、长度等于半径长的弧所对的圆心角叫做1弧度6、半径为r的圆的圆心角所对弧的长为 l,则角的弧度数的绝对值是lrPxyAOMT7、弧度制与角度制的换算公式:2360,1180,180157.38、若扇形的圆心角为为弧度制,半径为r,弧长为 l,周长为 C,面积为 S,则lr,2Crl,21122Slrr9、设是 一 个 任 意 大 小 的 角,的终 边 上 任 意 一 点的 坐 标 是,x y,它 与 原 点 的 距 离 是220r rxy,则sinyr,cosx

3、r,tan0yxx10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正11、三角函数线:sin,cos,tan12、同角三角函数的基本关系:221 sincos12222sin1cos,cos1sin;sin2tancossinsintancos,costan13、三角函数的诱导公式:1 sin 2sink,cos 2cosk,tan 2tankk2 sinsin,coscos,tantan3 sinsin,coscos,tantan4 sinsin,coscos,tantan口诀:函数名称不变,符号看象限5 sincos2,cossin2文档编码

4、:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2

5、 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8

6、ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档

7、编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10

8、A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C

9、8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7

10、文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G76 sincos2,cossin2口诀:正弦与余弦互换,符号看象限14、函数sinyx的图象上所有点向左(右)平移个单位长度,得到函数sinyx的图象;再将函数sinyx的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数sinyx的图象;再将函数sin

11、yx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数sinyx的图象函数sinyx的图象上所有点的横坐标伸长(缩短)到原来的1倍(纵坐标不变),得到函数sinyx的图象;再将函数sinyx的图象上所有点向左(右)平移个单位长度,得到函数sinyx的图象;再将函数sinyx的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数sinyx的图象函数sin0,0yx的性质:振幅:;周期:2;频率:12f;相位:x;初相:函数sinyx,当1xx时,取得最小值为miny;当2xx时,取得最大值为maxy,则m axmi n12yy,maxmin12yy,21122xx

12、xx文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O

13、2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T

14、1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7

15、Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X

16、1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H

17、8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4

18、H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G715、正弦函数、余弦函数和正切函数的图象与性质:sinyxcosyxtanyx图象定义域RR,2x xkk值域1,11,1R最值当22xkk时,max1y;当22xkk时,min1y当2xkk时,max1y;当2xkk时,min1y既无最大值也无最小值周期性2

19、2奇偶性奇函数偶函数奇函数函数性质文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7

20、Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X

21、1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H

22、8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4

23、H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK

24、3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ

25、1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7单调性在2,222kkk上是增函数;在32,222kkk上是减函数在 2,2kkk上是增函数;在2,2kkk上是减函数在,22kkk上是增函数对称中心,0kk,02kk,02kk对称轴2xkkxkk无对称轴文档编码:CK3X1O2

26、O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1

27、Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y

28、6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1

29、O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8

30、T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H

31、7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3

32、X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7第一章三角函数综合练习一、选择题1.已知角的终边经过点0p(-3,-4),则)2cos(的值为()A.54 B.53 C.54 D.532.半径为cm,圆心角为120所对的弧长为()A.3cmB.23cmC.23cmD.223cm3.函数12sin()34yx的周期、振幅、初相分别是()

33、A.3,2,4B.3,2,12C.6,2,12D.6,2,44.sinyx的图象上各点纵坐标不变,横坐标变为原来的12,然后把图象沿x轴向右平移3个单位,则表达式为()A.1sin()26yxB.2sin(2)3yxC.sin(2)3yxD.1sin()23yx5已知函数f(x)sinx3(0)的最小正周期为,则该函数图像()A关于直线x4对称B关于点(3,0)对称C关于点(4,0)对称D关于直线x3对称6.如图,曲线对应的函数是()Ay=|sinx|By=sin|x|Cy=sin|x|Dy=|sinx|7函数y=cos2x 3cosx+2的最小值是()A2 B0 C41D6 文档编码:CK3

34、X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1

35、H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A

36、4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:C

37、K3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 H

38、Z1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL

39、5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码

40、:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G78函数y 3sin 2x6(x0,)的单调递增区间是()A.0,512B.6,23C.6,1112D.23,11129.已知函数sin()yAxB的一部分图象如右图所示,如果0,0,|2A,则()A.4A B.1 C.6 D.4B10.已知1cos()63,则sin()3的值为(

41、)A.13B.13C.2 33D.2 3311.已知、是第二象限的角,且coscos,则()A.;B.sinsin;C.tantan;D.以上都不对12.设()f x是定义域为R,最小正周期为32的函数,若cos,(0)(),2sin,(0)xxf xxx则15()4f等于()A.1 B.22 C.0 D.22二、填空题13函数xxfcos21)(的定义域是 _ 文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4

42、H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK

43、3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ

44、1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5

45、A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:

46、CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2

47、HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 Z

48、L5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G714若sin cossin cos2,则 sin cos 的值是 _.15、函数)32,6)(6cos(xxy的值域是16函数 f(x)=sinx+2|sinx|,x0,2 的图象与直线y=k 有且仅有两个不同的交点,则 k 的取值范围是_.三、解答题17.已知是第二象限角,sin()tan()()sin()cos(2)tan()f(1)化简()f;(2)若31sin()23,求()f的值18.已知tan3,求下列各式的值:(1)4sincos3sin5cos;(2)212sincoscos1

49、9(1)画出函数ysin62x在一个周期的函数图像;(2)求出函数的对称中心和对称轴方程文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1

50、O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8T1Q8C8 ZL5A4H7Y6G7文档编码:CK3X1O2O10A2 HZ1H8

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁