《李攀直角三角形全等判定_公开课.ppt》由会员分享,可在线阅读,更多相关《李攀直角三角形全等判定_公开课.ppt(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、授课教授课教师:师:李攀李攀欢欢迎迎各各位位老老师师光光临临指指导导!忆一忆忆一忆1 1、全等三角形的对应边、全等三角形的对应边 -,-,,对,对应角应角-相等相等相等相等2 2、判定两个三角形全等的方法有:、判定两个三角形全等的方法有:SAS、ASA、AAS、SSS直直角角边边直角边直角边斜边斜边 3、认识直角三角形、认识直角三角形记法:记法:RtABCRtABC直角边:直角边:、,斜边斜边 。BCACAB 舞台背景的形状是两个直角三角形,工作人舞台背景的形状是两个直角三角形,工作人员想知道两个直角三角形是否全等,但每个三角想知道两个直角三角形是否全等,但每个三角形都有一条直角形都有一条直角
2、边被花盆遮住被花盆遮住,无法无法测量。量。(1)你能帮他想个你能帮他想个办法法吗?根据根据SAS可测量其余两边与这两边的夹角。可测量其余两边与这两边的夹角。根据根据ASA,AAS可测量对应一边和一锐角可测量对应一边和一锐角(2)如果他只)如果他只带一个卷尺,能完成一个卷尺,能完成这个任个任务吗?他用卷尺只能量出斜边和一条直角边,他用卷尺只能量出斜边和一条直角边,如果它们对应相等,能证明这两个直角如果它们对应相等,能证明这两个直角三角形全等吗?三角形全等吗?1.通过演示实验,探索直角三角形全等通过演示实验,探索直角三角形全等的条件;的条件;2.学会用斜边直角边公理判定直角三角学会用斜边直角边公理
3、判定直角三角形全等;形全等;3.体验用所学知识解决数学问题的乐趣体验用所学知识解决数学问题的乐趣动动手动动手 做一做做一做用三角板和圆规,画一个用三角板和圆规,画一个RtABC,使得使得C=90,一直角边一直角边CA=4cm,斜边斜边AB=5cm.ABC5cm4cm动动手动动手 做一做做一做Step1:画MCN=90;CNM动动手动动手 做一做做一做Step1:画MCN=90;CNMStep2:在射线CM上截取CA=4cm;AStep1:画MCN=90;Step2:在射线CM上截取CA=4cm;动动手动动手 做一做做一做Step3:以A为圆心,5cm为半径画弧,交射线CN于B;CNMABSte
4、p1:画MCN=90;CNMStep2:在射线CM上截取CA=4cm;B动动手动动手 做一做做一做Step3:以A为圆心,5cm为半径画弧,交射线CN于B;AStep4:连结AB;ABC即为所要画的三角形动动手动动手 做一做做一做 比比看比比看把我们刚画好的直角三角形剪下来,和同桌的比比看,把我们刚画好的直角三角形剪下来,和同桌的比比看,这些直角三角形有怎样的关系呢?这些直角三角形有怎样的关系呢?RtABCABC5cm4cmAB C 5cm4cm斜边、直角边公理斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等有斜边和一条直角边对应相等的两个直角三角形全等.简写成简写成“斜边、直角
5、边斜边、直角边”或或“HL”斜边、直角边公理斜边、直角边公理 (HL)ABCA BC 在RtABC和Rt 中AB=BC=RtABCC=C=90有斜边和一条直角边对应相等的两个直角三角形全等有斜边和一条直角边对应相等的两个直角三角形全等.判断:判断:满足下列条件的两个三角形是否全等满足下列条件的两个三角形是否全等?为什么为什么?1.1.一个锐角及这个锐角的对边对应相等的两个直角三角形一个锐角及这个锐角的对边对应相等的两个直角三角形.全等全等(AAS)2.2.一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形一个锐角及这个锐角相邻的直角边对应相等的两个直角三角形.全等全等判断:判断:满足下列条
6、件的两个三角形是否全等满足下列条件的两个三角形是否全等?为什么为什么?(ASA)3.3.两直角边对应相等的两个直角三角形两直角边对应相等的两个直角三角形.全等全等判断:判断:满足下列条件的两个三角形是否全等满足下列条件的两个三角形是否全等?为什么为什么?(SAS)4.4.有两边对应相等的两个直角三角形有两边对应相等的两个直角三角形.判断:判断:满足下列条件的两个三角形是否全等满足下列条件的两个三角形是否全等?为什么为什么?情况情况1:情况情况2:全等(SAS)全等(HL)例1已知:如图已知:如图,在在ABC和和ABD中,中,ACBC,ADBD,垂足分别为垂足分别为C,D,AD=BC,求证:求证
7、:ABC BAD.ABDC证明:证明:ACBC,ADBD C=D=90 在在RtABC和和RtBAD中中 RtABC RtBAD(HL)A例2已知:如图,已知:如图,ABC中,中,AB=AC,AD是高是高求证求证:BD=CD;BAD=CADABCD证明:证明:AD是高是高 ADB=ADC=90 在在RtADB和和RtADC中中AB=ACAD=AD RtADB RtADC(HL)BD=CD,BAD=CAD等腰三角形三线合一等腰三角形三线合一例3已知:如图,在已知:如图,在ABC和和DEF中中,AP、DQ分别是高分别是高,并且并且AB=DE,AP=DQ,BAC=EDF,求证:求证:ABC DEFA
8、BCPDEFQBAC=EDF,AB=DE,B=E分析:分析:ABC DEFRtABP RtDEQAB=DE,AP=DQABCPDEFQ证明:证明:AP、DQ是是ABC和和DEF的高的高 APB=DQE=90 在在RtABP和和RtDEQ中中AB=DEAP=DQRtABP RtDEQ(HL)B=E 在在ABC和和DEF中中BAC=EDF AB=DEB=EABC DEF(ASA)思维拓展思维拓展已知:如图,在已知:如图,在ABC和和DEF中中,AP、DQ分别是高分别是高,并且并且AB=DE,AP=DQ,BAC=EDF,求证:求证:ABC DEFABCPDEFQ变式变式1:若把:若把BACEDF,改
9、为改为BCEF,ABC与与DEF全等吗?请说明思路。全等吗?请说明思路。小结小结已知:如图,在已知:如图,在ABC和和DEF中中,AP、DQ分别是高分别是高,并且并且AB=DE,AP=DQ,BAC=EDF,求证:求证:ABC DEFABCPDEFQ变式变式1:若把:若把BACEDF,改为改为BCEF,ABC与与DEF全等吗?请说明思路。全等吗?请说明思路。变式变式2:若把:若把BACEDF,改为改为AC=DF,ABC与与DEF全等吗?请说明思路。全等吗?请说明思路。思维拓展思维拓展小结小结已知:如图,在已知:如图,在ABC和和DEF中中,AP、DQ分别是高分别是高,并且并且AB=DE,AP=D
10、Q,BAC=EDF,求证:求证:ABC DEFABCPDEFQ变式变式1:若把:若把BACEDF,改为改为BCEF,ABC与与DEF全等吗?请说明思路。全等吗?请说明思路。变式变式2:若把:若把BACEDF,改为改为AC=DF,ABC与与DEF全等吗?请说明思路。全等吗?请说明思路。变式变式3:请你把例题中的:请你把例题中的BACEDF改改为另一个适当条件,使为另一个适当条件,使ABC与与DEF仍能仍能全等。试证明。全等。试证明。思维拓展思维拓展小结小结小结小结直角三角直角三角形全等的形全等的判定判定一般三角一般三角形全等的形全等的判定判定“SAS”“ASA”“AAS”“SSS”“SAS”“ASA”“AAS”“HL”灵活运用各种方法证明直角三角形全等灵活运用各种方法证明直角三角形全等应用应用“SSS”1.1.如图,如图,AC=ADAC=AD,C C,D D是直角,是直角,求证:求证:BC=BDCDAB