初一下册数学知识点总结1000字范文(6篇).docx

上传人:碎****木 文档编号:82933198 上传时间:2023-03-26 格式:DOCX 页数:17 大小:19.72KB
返回 下载 相关 举报
初一下册数学知识点总结1000字范文(6篇).docx_第1页
第1页 / 共17页
初一下册数学知识点总结1000字范文(6篇).docx_第2页
第2页 / 共17页
点击查看更多>>
资源描述

《初一下册数学知识点总结1000字范文(6篇).docx》由会员分享,可在线阅读,更多相关《初一下册数学知识点总结1000字范文(6篇).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 初一下册数学知识点总结1000字范文(6篇)初一下册数学学问点总结1000字范文1 相交线 有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。 两条直线相交有4对邻补角。 有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。 两条直线相交,有2对对顶角。 对顶角相等。 两条直线相交,所成的四个角中有一个角是直角,那么这两条直线相互垂直。其中一条直线叫做另一条直线的.垂线,它们的交点叫做垂足。 平行线及其判定 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 平行线的性质 性质1两条平行线被第三条直

2、线所截,同位角相等。简洁说成:两直线平行,同位角相等。 性质2两条平行线被第三条直线所截,内错角相等。简洁说成:两直线平行,内错角相等。 性质3两条平行线被第三条直线所截,同旁内角互补。简洁说成:两直线平行,同旁内角互补。 平移 向左平移a个单位长度,可以得到对应点(x-a,y) 向上平移b个单位长度,可以得到对应点(x,y+b) 向下平移b个单位长度,可以得到对应点(x,y-b) 初一下册数学学问点总结1000字范文2 (一)正负数 1.正数:大于0的数。 2.负数:小于0的数。 3.0即不是正数也不是负数。 4.正数大于0,负数小于0,正数大于负数。 (二)有理数 1.有理数:由整数和分数

3、组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:) 2.整数:正整数、0、负整数,统称整数。 3.分数:正分数、负分数。 (三)数轴 1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。) 2.数轴的三要素:原点、正方向、单位长度。 3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。 4.肯定值:正数的肯定值是它本身,负数的肯定值

4、是它的相反数;0的肯定值是0,两个负数,肯定值大的反而小。 (四)有理数的加减法 1.先定符号,再算肯定值。 2.加法运算法则:同号相加,到一样符号,并把肯定值相加。异号相加,取肯定值大的加数的符号,并用较大的肯定值减去较小的肯定值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。 3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。 4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 5.a-b=a+(-b)减去一个数,等于加这个数的相反数。 初一下册数学学问点总结1000字范文3 概念学问 1、单项式:数字与字

5、母的积,叫做单项式。 2、多项式:几个单项式的和,叫做多项式。 3、整式:单项式和多项式统称整式。 4、单项式的次数:单项式中全部字母的指数的和叫单项式的次数。 5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。 6、余角:两个角的和为90度,这两个角叫做互为余角。 7、补角:两个角的和为180度,这两个角叫做互为补角。 8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。这两个角就是对顶角。 9、同位角:在“三线八角”中,位置一样的角,就是同位角。 10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。 11、同旁内角:在“三线八角”

6、中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。 12、有效数字:一个近似数,从左边第一个不为0的数开头,到准确的那位止,全部的数字都是有效数字。 13、概率:一个大事发生的可能性的大小,就是这个大事发生的概率。 14、三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形叫做三角形。 15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。 16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。 17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫

7、做三角形的高线(简称三角形的高)。 18、全等图形:两个能够重合的图形称为全等图形。 19、变量:变化的数量,就叫变量。 20、自变量:在变化的量中主动发生变化的,变叫自变量。 21、因变量:随着自变量变化而被动发生变化的量,叫因变量。 22、轴对称图形:假如一个图形沿一条直线折叠后,直线两旁的局部能够相互重合,那么这个图形 叫做轴对称图形。 初一下册数学学问点总结1000字范文4 代数初步学问 1. 代数式:用运算符号“+ - ”连接数及表示数的字母的式子称为代数式.留意:用字母表示数有肯定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个

8、数或一个字母也是代数式。 2. 几个重要的代数式:(m、n表示整数) (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ; (4)若b0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 . 有理数 凡能写成q/p(p,q为整数且p0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;

9、整数和分数统称有理数.留意:0既不是正数,也不是负数;-a不肯定是负数,+a也不肯定是正数;p不是有理数; 有理数加法法则: (1)同号两数相加,取一样的符号,并把肯定值相加; (2)异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定值; (3)一个数与0相加,仍得这个数. 有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把肯定值相乘; (2)任何数同零相乘都得零; (3)几个数相乘

10、,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数打算. 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的安排律:a(b+c)=ab+ac . 有理数除法法则:除以一个数等于乘以这个数的倒数;留意:零不能做除数。 初一下册数学学问点总结1000字范文5 一.整式 1.单项式 由数与字母的积组成的代数式叫做单项式.单独一个数或字母也是单项式. 单项式的系数是这个单项式的数字因数,作为单项式的系数,必需连同数字前面的性质符号,假如一个单项式只是字母的积,并非没有系数. 一个单项式中,全部字母的指数和叫做这个单项式的次数

11、. 2.多项式 几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数. 单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不行能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数. 3.整式单项式和多项式统称为整式. 二.整式的加减 1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式. 2.括号前面

12、是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘. 三.同底数幂的乘法 同底数幂的乘法法则:(m,n都是正数)是幂的运算中最根本的法则,在应用法则运算时,要留意以下几点: 法则使用的前提条件是:幂的底数一样而且是相乘时,底数a可以是一个详细的数字式字母,也可以是一个单项或多项式; 指数是1时,不要误以为没有指数; 不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数一样指数就可以相加;而对于加法,不仅底数一样,还要求指数一样才能相加; 当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数); 公式还可以逆用:(m、n均为正整数) 四

13、.幂的乘方与积的乘方 1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为根底推导出来的,但两者不能混淆. 2. 3.底数有负号时,运算时要留意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底, 如将(-a)3化成-a3 4.底数有时形式不同,但可以化成一样. 5.要留意区分(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零). 6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数). 7.幂的乘方与积乘方法则均可逆向运用. 五.同底数幂的除法 1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (

14、a0,m、n都是正数,且mn). 2.在应用时需要留意以下几点: 法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0. 任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义. 任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a0,p是正整数),而0-1,0-3都是无意义的;当a0时,a-p的值肯定是正的; 初一下册数学学问点总结1000字范文6 多项式除以单项式 一、单项式 1、都是数字与字母的乘积的代数式叫做单项式。 2、单项式的数字因数叫做单项式的系数。 3、单项式中全部字母的指数和叫做单项式的次数。 4、单独一个数或

15、一个字母也是单项式。 5、只含有字母因式的单项式的系数是1或1。 6、单独的一个数字是单项式,它的系数是它本身。 7、单独的一个非零常数的次数是0。 8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算。 9、单项式的系数包括它前面的符号。 10、单项式的系数是带分数时,应化成假分数。 11、单项式的系数是1或1时,通常省略数字“1”。 12、单项式的次数仅与字母有关,与单项式的系数无关。 二、多项式 1、几个单项式的和叫做多项式。 2、多项式中的每一个单项式叫做多项式的项。 3、多项式中不含字母的项叫做常数项。 4、一个多项式有几项,就叫做几项式。 5、多项式的每一项都包括项前面的

16、符号。 6、多项式没有系数的概念,但有次数的概念。 7、多项式中次数的项的次数,叫做这个多项式的次数。 三、整式 1、单项式和多项式统称为整式。 2、单项式或多项式都是整式。 3、整式不肯定是单项式。 4、整式不肯定是多项式。 5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。 四、整式的加减 1、整式加减的理论依据是:去括号法则,合并同类项法则,以及乘法安排率。 2、几个整式相加减,关键是正确地运用去括号法则,然后精确合并同类项。 3、几个整式相加减的一般步骤: (1)列出代数式:用括号把每个整式括起来,再用加减号连接。 (2)按去括号法则去括号。 (3)合并同类项。 4、代数式求

17、值的一般步骤: (1)代数式化简。 (2)代入计算 (3)对于某些特别的代数式,可采纳“整体代入”进展计算。 五、同底数幂的乘法 1、n个一样因式(或因数)a相乘,记作an,读作a的n次方(幂),其中a为底数,n为指数,an的结果叫做幂。 2、底数一样的幂叫做同底数幂。 3、同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。即:aman=am+n。 4、此法则也可以逆用,即:am+n=aman。 5、开头底数不一样的幂的乘法,假如可以化成底数一样的幂的乘法,先化成同底数幂再运用法则。 六、幂的乘方 1、幂的乘方是指几个一样的幂相乘。(am)n表示n个am相乘。 2、幂的乘方运算法则:幂

18、的乘方,底数不变,指数相乘。(am)n=amn。 3、此法则也可以逆用,即:amn=(am)n=(an)m。 七、积的乘方 1、积的乘方是指底数是乘积形式的乘方。 2、积的乘方运算法则:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即(ab)n=anbn。 3、此法则也可以逆用,即:anbn=(ab)n。 八、三种“幂的运算法则”异同点 1、共同点: (1)法则中的底数不变,只对指数做运算。 (2)法则中的底数(不为零)和指数具有普遍性,即可以是数,也可以是式(单项式或多项式)。 (3)对于含有3个或3个以上的运算,法则仍旧成立。 2、不同点: (1)同底数幂相乘是指数相加。 (

19、2)幂的乘方是指数相乘。 (3)积的乘方是每个因式分别乘方,再将结果相乘。 九、同底数幂的除法 1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即:aman=am-n(a0)。 2、此法则也可以逆用,即:am-n=aman(a0)。 十、零指数幂 1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1(a0)。 十一、负指数幂 1、任何不等于零的数的p次幂,等于这个数的p次幂的倒数,即: 注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。 十二、整式的乘法 (一)单项式与单项式相乘 1、单项式乘法法则:单项式与单项式相乘,把它们的系数、一样字母的幂分别相乘,其余字母连

20、同它的指数不变,作为积的因式。 2、系数相乘时,留意符号。 3、一样字母的幂相乘时,底数不变,指数相加。 4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。 5、单项式乘以单项式的结果仍是单项式。 6、单项式的乘法法则对于三个或三个以上的单项式相乘同样适用。 (二)单项式与多项式相乘 1、单项式与多项式乘法法则:单项式与多项式相乘,就是依据安排率用单项式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。 2、运算时留意积的符号,多项式的每一项都包括它前面的符号。 3、积是一个多项式,其项数与多项式的项数一样。 4、混合运算中,留意运算挨次

21、,结果有同类项时要合并同类项,从而得到最简结果。 (三)多项式与多项式相乘 1、多项式与多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。 2、多项式与多项式相乘,必需做到不重不漏。相乘时,要按肯定的挨次进展,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多项式项数的积。 3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负”。 4、运算结果中有同类项的要合并同类项。 5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。 十三、平方差公式 1、(a+b)(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。 2、平方差公式中的a、b可以是单项式,也可以是多项式。 3、平方差公式可以逆用,即:a2-b2=(a+b)(a-b)。 4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成 (a+b)?(a-b)的形式,然后看a2与b2是否简单计算。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 成人自考

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁