4多边形的内角和与外角和.ppt

上传人:s****8 文档编号:82736458 上传时间:2023-03-26 格式:PPT 页数:31 大小:2.52MB
返回 下载 相关 举报
4多边形的内角和与外角和.ppt_第1页
第1页 / 共31页
4多边形的内角和与外角和.ppt_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《4多边形的内角和与外角和.ppt》由会员分享,可在线阅读,更多相关《4多边形的内角和与外角和.ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、4 4 多边形的内角和与外角和多边形的内角和与外角和1 1使学生掌握四边形的有关概念及四边形的内角和定理使学生掌握四边形的有关概念及四边形的内角和定理.2 2通过引导学生观察气象站的实例,培养学生从具体事通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力物中抽象出几何图形的能力.3 3通过推导四边形内角和定理,对学生渗透化归转化的通过推导四边形内角和定理,对学生渗透化归转化的数学思想数学思想.4 4讲解四边形的有关概念时,联系三角形的有关概念向讲解四边形的有关概念时,联系三角形的有关概念向学生渗透类比思想学生渗透类比思想.四边形四边形五边形五边形六边形六边形八边形八边形三角

2、形三角形【定义定义】在平面在平面内,由若干条不内,由若干条不在同一条直线上在同一条直线上的线段首尾顺次的线段首尾顺次相连组成的封闭相连组成的封闭图形叫做多边形图形叫做多边形.顶点顶点内角内角边边对角线对角线(连接不相邻两个顶点的线段连接不相邻两个顶点的线段)这这里里所所说说的的多多边边形形都都指指凸凸多多边边形形 我们现在研究的是如图我们现在研究的是如图1 1所示的多边形,是凸多边形;所示的多边形,是凸多边形;如图如图2 2所示的多边形,是凹多边形,但不在现在研究的范围所示的多边形,是凹多边形,但不在现在研究的范围中中.今后如果不说明,我们讲的多边形都是凸多边形今后如果不说明,我们讲的多边形都

3、是凸多边形.图图2 2图图1 1 上图广场中心的边缘是一个五边形,我们将共同来探求它的五个内角的和上图广场中心的边缘是一个五边形,我们将共同来探求它的五个内角的和.A BCDE 我们知道,三角形的内角和是我们知道,三角形的内角和是_度度,四边形的内角四边形的内角和是和是 度,那这个五边形的内角和呢?度,那这个五边形的内角和呢?180360 你能动手做一做吗你能动手做一做吗?你能想出几种不同的解法?你能想出几种不同的解法?【想一想想一想】A BCDE1803=540【探究探究1 1】多边形多边形边边数数分成三角分成三角形的个数形的个数图形图形内角和内角和计算规律计算规律三角形三角形四边形四边形五

4、边形五边形六边形六边形七边形七边形n n边形边形3 34 45 56 67 7n n1 1n-2n-22 23 34 45 5180180360360540540720720900900(n(n2)2)180180(n n2 2)180180(7 72 2)180180(6 62 2)180180(5 52 2)180180(4(42 2)180180(3 32 2)180180E ABCDO180 5 360=540【探究探究2 2】还有其他的做法吗?还有其他的做法吗?例如:例如:ABCDEF180 4 180=540【探究探究3 3】A BCDE180+360=540【探究探究4 4】【解

5、析解析】由多边形的内角和公式可得由多边形的内角和公式可得:(n-2n-2)180=1440 180=1440,(n-2)=8(n-2)=8,n=10n=10,这是十边形这是十边形.十十1 1.如果一个多边形的内角和是如果一个多边形的内角和是14401440度,那么这是度,那么这是_ _ 边形边形.【做一做做一做】2 2.如图如图:(1)(1)作多边形过顶点作多边形过顶点A A的所有对角的所有对角线,并分别用字母表达出来线,并分别用字母表达出来.(2)(2)求这个多边形的内角和求这个多边形的内角和.ABCDEF【解析解析】(1)(1)过顶点过顶点A A的对角线共有三条的对角线共有三条,分别是分别

6、是ACAC、ADAD和和AE.AE.(2)(2)这个多边形的内角和是:这个多边形的内角和是:(6-2)(6-2)180 180=720=720.观察图中的多边形观察图中的多边形,它们的边、角有什么特点?它们的边、角有什么特点?在平面内,内角都相等、边也都相等的多边形叫做正多边形在平面内,内角都相等、边也都相等的多边形叫做正多边形.正三角形正三角形正方形正方形正五边形正五边形正六边形正六边形正八边形正八边形(1 1)一个多边形的边都相等,它的内角一定都相等吗?)一个多边形的边都相等,它的内角一定都相等吗?(2 2)一个多边形的内角都相等,它的边一定都相等吗?)一个多边形的内角都相等,它的边一定都

7、相等吗?菱形菱形矩形矩形(3 3)正三角形、正四边形(正方形)、正五边形、正六)正三角形、正四边形(正方形)、正五边形、正六边形、正八边形的内角分别是多少度?正边形、正八边形的内角分别是多少度?正n n边形呢?边形呢?(分别是(分别是6060,9090,108108,120120,135135,)【议一议议一议】2.2.若正若正n n边形的一个内角是边形的一个内角是144144度,则度,则n=_.n=_.【解析解析】由多边形的内角和公式可得:由多边形的内角和公式可得:(n-2)(n-2)180=144n 180=144n,180n 180n 360=144n 360=144n,180n-144

8、n=360180n-144n=360,36n=36036n=360,n=10.n=10.10101.1.如果十二边形的每一个内角都相等,那么每个内角是如果十二边形的每一个内角都相等,那么每个内角是_度度.150150【跟踪训练跟踪训练】3.3.在四边形在四边形ABCDABCD中,中,A=120A=120度,度,B BC CD D =3=34 45 5,求,求B B,C C,D D的度数的度数.【解析解析】设设B B,C,DC,D的度数分别是的度数分别是3x,4x,5x3x,4x,5x度,由度,由四边形的内角和等于四边形的内角和等于360360度可得:度可得:120+3x+4x+5x=36012

9、0+3x+4x+5x=36012x=24012x=240,x=20 x=20,3x=60 3x=60,4x=80 4x=80,5x=100.5x=100.答:答:B,CB,C,D D的度数分别为的度数分别为6060,80,80,100,100.(1 1)小明每从一条街道转)小明每从一条街道转到下一条街道时,身体转到下一条街道时,身体转过的角是哪个角?过的角是哪个角?(2 2)他每跑完一圈,身体转过的角度之和是多少?)他每跑完一圈,身体转过的角度之和是多少?(3 3)在上图中,你能求出)在上图中,你能求出 1+1+2+2+3+3+4+4+5 5吗?你是怎吗?你是怎样得到的?样得到的?ABCDE1

10、2345【结论结论】1 1,2 2,3 3,4 4,5 5的和等于的和等于360360 多边形内角的一边与另一边的反向延长线所组成的角多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角叫做这个多边形的外角.在每个顶点处取这个多边形的一个外角,它们的和叫在每个顶点处取这个多边形的一个外角,它们的和叫做这个多边形的外角和做这个多边形的外角和.【结论结论】多边形的外角和等于多边形的外角和等于360360。【想一想想一想】如果广场的形状是六边形、八边形,那么还有类如果广场的形状是六边形、八边形,那么还有类似的结论吗?似的结论吗?【想一想想一想】(1 1)还有什么方法可以推导出多边形)还

11、有什么方法可以推导出多边形外角和公式?外角和公式?(2 2)利用多边形外角和的结论,能否推导出多边)利用多边形外角和的结论,能否推导出多边形内角和的结论?形内角和的结论?【议一议议一议】利用多边形外角和的结论,能推导多边形内角利用多边形外角和的结论,能推导多边形内角和的结论吗?反过来呢?和的结论吗?反过来呢?一个多边形的内角和等于它的外角和的一个多边形的内角和等于它的外角和的3 3倍,它是几边形倍,它是几边形?【解析解析】设它是设它是n n边形边形.外角和是外角和是360360,内角和是内角和是(n-2)(n-2)180180,3603603=(n-2)3=(n-2)180180,n=8.n=

12、8.1.1.(茂名(茂名中考)下列命题是假命题的是(中考)下列命题是假命题的是()A.A.三角形的内角和是三角形的内角和是180180B.B.多边形的外角和都等于多边形的外角和都等于360360C.C.五边形的内角和是五边形的内角和是900900D.D.三角形的一个外角等于和它不相邻的两个内角的和三角形的一个外角等于和它不相邻的两个内角的和答案:答案:选选C C2 2(自贡(自贡中考)一个多边形截取一个角后,形成的中考)一个多边形截取一个角后,形成的另一个多边形的内角和是另一个多边形的内角和是16201620,则原来多边形的边,则原来多边形的边数是(数是().A A1010 B B1111C

13、C1212 D D以上都有可能以上都有可能 答案:答案:选选D D 3 3(肇庆(肇庆中考)一个多边形的内角和是外角和的中考)一个多边形的内角和是外角和的2 2倍,倍,则这个多边形是(则这个多边形是()A A四边形四边形 B B五边形五边形 C C六边形六边形 D D八边形八边形答案:答案:选选4.4.(江西(江西中考)一大中考)一大门门的的栏栏杆如杆如图图所示,所示,BABA垂直垂直于地面于地面AEAE于于A A,CDCD平行于地面平行于地面AEAE,则则ABC+BCDABC+BCD 度度答案:答案:270270【规律方法规律方法】多边形的问题经常转化为三角形的问题求解,多边形的问题经常转化

14、为三角形的问题求解,在三角形的基础上,利用三角形的边和角研究多边形的边和在三角形的基础上,利用三角形的边和角研究多边形的边和角角.本节课我们研究了多边形的定义及其内角和、外角和公式本节课我们研究了多边形的定义及其内角和、外角和公式.1.1.多边形的内角和公式多边形的内角和公式,即:即:n n边形的内角和等于边形的内角和等于(n(n2)2)180180,它揭示了多边它揭示了多边 形内角和与边数之间的关系形内角和与边数之间的关系.2.2.多边形的外角及其外角和公式多边形的外角及其外角和公式.知道多边形的外角和与多知道多边形的外角和与多边形的边数无关,它恒等于边形的边数无关,它恒等于360360,因而,求解有关多边形,因而,求解有关多边形的角的计算题有时直接应用外角和公式会比较简便的角的计算题有时直接应用外角和公式会比较简便.你可以选择这样的“三心二意”:信心、恒心、决心;创意、乐意。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁