《211参数方程.ppt》由会员分享,可在线阅读,更多相关《211参数方程.ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、20 20 三月三月 2023 2023第二讲第二讲 参数方程参数方程 在过去的学习中我们已经掌握了一些求在过去的学习中我们已经掌握了一些求曲线方程的方法,在求某些曲线方程时,直曲线方程的方法,在求某些曲线方程时,直接确定曲线上的点的坐标接确定曲线上的点的坐标x,y的关系并不容的关系并不容易,但如果利用某个参数作为联系它们的桥易,但如果利用某个参数作为联系它们的桥梁,那么就可以方便地得出坐标梁,那么就可以方便地得出坐标x,y所要适所要适合的条件,即参数可以帮助我们得出曲线的合的条件,即参数可以帮助我们得出曲线的方程方程f(x,y)0。如图如图,一架救援飞机在离灾区地面一架救援飞机在离灾区地面5
2、00m高处以高处以100m/s的速度作水平直线飞行的速度作水平直线飞行.为使投放救援物资准确落于灾为使投放救援物资准确落于灾区指定的地面区指定的地面(不记空气阻力不记空气阻力),飞行员应如何确定投放时飞行员应如何确定投放时机呢?机呢?提示:提示:即求飞行员在离救援点的水平距离即求飞行员在离救援点的水平距离多远时,开始投放物资?多远时,开始投放物资?救援点救援点投放点投放点1、参数方程的概念、参数方程的概念1、参数方程的概念:、参数方程的概念:xy500o物资投出机舱后,它的运动由下列两种运动合成:物资投出机舱后,它的运动由下列两种运动合成:(1)沿)沿ox作初速为作初速为100m/s的匀速直线
3、运动;的匀速直线运动;(2)沿)沿oy反方向作自由落体运动。反方向作自由落体运动。如图如图,一架救援飞机在离灾区地面一架救援飞机在离灾区地面500m高处以高处以100m/s的速度作水平直线飞行的速度作水平直线飞行.为使投放救援物资准确落于灾为使投放救援物资准确落于灾区指定的地面区指定的地面(不记空气阻力不记空气阻力),飞行员应如何确定投放时飞行员应如何确定投放时机呢?机呢?xyoAM(x,y)xy500o1、参数方程的概念:、参数方程的概念:如图如图,一架救援飞机在离灾区地面一架救援飞机在离灾区地面500m高处以高处以100m/s的速度作水平直线飞行的速度作水平直线飞行.为使投放救援物资准确落
4、于灾为使投放救援物资准确落于灾区指定的地面区指定的地面(不记空气阻力不记空气阻力),飞行员应如何确定投放时飞行员应如何确定投放时机呢?机呢?一、方程组有一、方程组有3个变量,其中的个变量,其中的x,y表示点的表示点的坐标,变量坐标,变量t叫做参变量,而且叫做参变量,而且x,y分别是分别是t的的函数。函数。二、由物理知识可知,物体的位置由时间二、由物理知识可知,物体的位置由时间t唯唯一决定,从数学角度看,这就是点一决定,从数学角度看,这就是点M的坐标的坐标x,y由由t唯一确定,这样当唯一确定,这样当t在允许值范围内连在允许值范围内连续变化时,续变化时,x,y的值也随之连续地变化,于是的值也随之连
5、续地变化,于是就可以连续地描绘出点的轨迹。就可以连续地描绘出点的轨迹。三、平抛物体运动轨迹上的点与满足方程组三、平抛物体运动轨迹上的点与满足方程组的有序实数对(的有序实数对(x,y)之间有一一对应关系。)之间有一一对应关系。一般地,在平面直角坐标系中,如果曲线上一般地,在平面直角坐标系中,如果曲线上任意一点的坐标任意一点的坐标x,y都是某个变数都是某个变数t的函数的函数并且对于并且对于t的每一个允许值,由方程组(的每一个允许值,由方程组(2)所确定的点所确定的点M(x,y)都在这条曲线上,那么方都在这条曲线上,那么方程程(2)就叫做这条曲线的就叫做这条曲线的参数方程参数方程,联系变数,联系变数
6、x,y的变数的变数t叫做叫做参变数参变数,简称,简称参数参数,相对于,相对于参数方程而言,直接给出点的坐标间关系的参数方程而言,直接给出点的坐标间关系的方程叫做方程叫做普通方程普通方程。关于参数几点说明:关于参数几点说明:参数是联系变数参数是联系变数x,y的的桥梁桥梁,1.参数方程中参数可以是有物理意义参数方程中参数可以是有物理意义,几何几何意义意义,也可以没有明显意义。也可以没有明显意义。2.同一曲线选取参数不同同一曲线选取参数不同,曲线参数方程形曲线参数方程形式也不一样式也不一样3.在实际问题中要确定参数的取值范围在实际问题中要确定参数的取值范围 一架救援飞机以一架救援飞机以100m/s的
7、速度作水平直线飞行的速度作水平直线飞行.在离灾在离灾区指定目标区指定目标1000m时投放救援物资(不计空气阻力时投放救援物资(不计空气阻力,重重力加速力加速 g=10m/s)问此时飞机的飞行高度约是多少?问此时飞机的飞行高度约是多少?(精确到(精确到1m)变式变式:xyo2、方程、方程 所表示的曲线上一点的坐标是所表示的曲线上一点的坐标是()练习1A、(、(2,7););B、C、D、(、(1,0)1、曲线、曲线 与与x轴的交点坐标是轴的交点坐标是()A、(、(1,4););B、C、D、B 已知曲线已知曲线C的参数方程是的参数方程是 点点M(5,4)在该在该 曲线上曲线上.(1)求常数)求常数a
8、;(2)求曲线)求曲线C的普通方程的普通方程.解解:(1)由题意可知由题意可知:1+2t=5at2=4解得解得:a=1t=2 a=1(2)由已知及由已知及(1)可得可得,曲线曲线C的方程为的方程为:x=1+2t y=t2由第一个方程得由第一个方程得:代入第二个方程得代入第二个方程得:训练2:思考题:思考题:动点动点M作等速直线运动作等速直线运动,它在它在x轴和轴和y轴方向的轴方向的速度分别为速度分别为5和和12,运动开始时位于点运动开始时位于点P(1,2),求点求点M的的轨迹参数方程。轨迹参数方程。解:设动点M(x,y)运动时间为t,依题意,得所以,点M的轨迹参数方程为参数方程求法参数方程求法
9、:(1)建立直角坐标系)建立直角坐标系,设曲线上任一点设曲线上任一点P坐标为坐标为 (2)选取适当的参数)选取适当的参数(3)根据已知条件和图形的几何性质)根据已知条件和图形的几何性质,物理意义物理意义,建立点建立点P坐标与参数的函数式坐标与参数的函数式(4)证明这个参数方程就是所由于的曲线的方程)证明这个参数方程就是所由于的曲线的方程小结:小结:一般地,在平面直角坐标系中,一般地,在平面直角坐标系中,如果曲线上任意一点的坐标如果曲线上任意一点的坐标x,y都是某个变数都是某个变数t的函数的函数 (2)并且对于并且对于t的每一个允许值,由方程组(的每一个允许值,由方程组(2)所确定的点)所确定的
10、点M(x,y)都在这条曲线上,都在这条曲线上,那么方程(那么方程(2)就叫做这条曲线的)就叫做这条曲线的参数方程参数方程,系变数系变数x,y的变数的变数t叫做参变数,简称参数。叫做参变数,简称参数。2、圆的参数方程、圆的参数方程yxorM(x,y)圆的参数方程的一般形式圆的参数方程的一般形式 由于选取的参数不同,圆有不同的由于选取的参数不同,圆有不同的参数方程,一般地,同一条曲线,可参数方程,一般地,同一条曲线,可以选取不同的变数为参数,因此得到以选取不同的变数为参数,因此得到的参数方程也可以有不同的形式,形的参数方程也可以有不同的形式,形式不同的参数方程,它们表示式不同的参数方程,它们表示
11、的曲线的曲线可以是相同的,另外,在建立曲线的可以是相同的,另外,在建立曲线的参数参数时,要注明参数及参数的取参数参数时,要注明参数及参数的取值范围。值范围。例、例、已知圆方程已知圆方程x x2 2+y+y2 2+2x-6y+9=0+2x-6y+9=0,将它,将它化为参数方程。化为参数方程。解:解:x x2 2+y+y2 2+2x-6y+9=0+2x-6y+9=0化为标准方程,化为标准方程,(x+1x+1)2 2+(y-3y-3)2 2=1=1,参数方程为参数方程为(为参数为参数)例例2 如图,圆如图,圆O的半径为的半径为2,P是圆上的动点,是圆上的动点,Q(6,0)是是x轴上的定点,轴上的定点
12、,M是是PQ的中点,当点的中点,当点P绕绕O作匀速圆周运动时,求点作匀速圆周运动时,求点M的轨迹的参数方程。的轨迹的参数方程。yoxPMQ(2,1)例例3、已知点已知点P(x,y)是圆)是圆x2+y2-6x-4y+12=0上动上动点,求(点,求(1)x2+y2 的最值,的最值,(2)x+y的最值,的最值,(3)P到直线到直线x+y-1=0的距离的距离d的最值。的最值。解:圆解:圆x2+y2-6x-4y+12=0即(即(x-3)2+(y-2)2=1,用参数方程表示为用参数方程表示为由于点由于点P在圆上,所以可设在圆上,所以可设P(3+cos,2+sin),),(1)x2+y2=(3+cos)2+(2+sin)2=14+4 sin+6cos=14+2 sin(+).(其中其中tan =3/2)x2+y2 的最大值为的最大值为14+2 ,最小值为,最小值为14-2 。(2)x+y=3+cos+2+sin=5+sin(+)x+y的最大值为的最大值为5+,最小值为,最小值为5-。(3)显然当显然当sin(+)=1时,时,d取最大值,最取最大值,最小值,分别为小值,分别为 ,。