预测卷《数学卷》含答案解析.pdf

上传人:索**** 文档编号:82522536 上传时间:2023-03-25 格式:PDF 页数:26 大小:1.07MB
返回 下载 相关 举报
预测卷《数学卷》含答案解析.pdf_第1页
第1页 / 共26页
预测卷《数学卷》含答案解析.pdf_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《预测卷《数学卷》含答案解析.pdf》由会员分享,可在线阅读,更多相关《预测卷《数学卷》含答案解析.pdf(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、中 考 模 拟 测 试 数 学 卷学校 _ 班级 _ 姓名 _ 成绩 _ 一、选择题(每小题3 分,共 30 分)12sin60的值等于()A1BCD222019 年 1 月 3 日,“嫦娥四号”探测器成功着陆在月球背面东经177.6 度、南纬45.5 度附近,实现了人类首次在月球背面软着陆数字177.6 用科学记数法表示为()A0.1776103B1.776102C1.776103D17.761023下列倡导节约的图案中,是轴对称图形的是()ABCD4下列运算正确的是()A2a+3a5a2B(a+2b)2a2+4b2Ca2?a3a6D(ab2)3 a3b65.如图,四边形ABCD 为菱形,A

2、,B 两点的坐标分别是(2,0),(0,1),点 C,D 在坐标轴上,则菱形ABCD 的周长等于()AB4C4D206.如图,在 ABC 中,ABAC,A30,直线ab,顶点 C 在直线 b 上,直线a 交 AB 于点 D,交AC 与点 E,若 1145,则 2 的度数是()A30B35C40D457.在学校的体育训练中,小杰投掷实心球的7 次成绩如统计图所示,则这7 次成绩的中位数和平均数分别是()A9.7m,9.9mB9.7m,9.8mC9.8m,9.7mD9.8m,9.9m8.函数 y ax+a 与 y(a0)在同一坐标系中的图象可能是()ABCD9.如图,在菱形ABCD 中,点 E 是

3、 BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点 F,连接 AE、AF若 AB6,B60,则阴影部分的面积为()A93B92C189D18610.二次函数yax2+bx+c(a,b,c 是常数,a0)的自变量x与函数值y 的部分对应值如下表:x 2 1012yax2+bx+ctm2 2n且当 x时,与其对应的函数值y0有下列结论:abc0;2 和 3 是关于 x 的方程 ax2+bx+ct 的两个根;0m+n其中,正确结论的个数是()A0B1C2D3二、填空题(每小题3 分,共 15 分)11.分式的值为 0,则 x 的值是12.一个 n 边形的内角和等于720,则 n13.在平面

4、直角坐标系xOy 中,点 A(a,b)(a0,b 0)在双曲线y上,点 A关于 x 轴的对称点B在双曲线y,则 k1+k2的值为14.设 x1,x2是一元二次方程x2x1 0 的两根,则x1+x2+x1x215.如图,正方形纸片ABCD 的边长为12,E 是边 CD 上一点,连接AE、折叠该纸片,使点A 落在 AE 上的 G 点,并使折痕经过点B,得到折痕BF,点 F 在 AD 上,若 DE5,则 GE 的长为三、解析题(本大题共8 个小题,满分75 分)16(8 分)先化简,再求值:(x1)(x),其中 x+117(9 分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校

5、的部分初中学生根据调查结果,绘制出如下的统计图 和图 请根据相关信息,解析下列问题:()本次接受调查的初中学生人数为,图 中 m 的值为;()求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;()根据统计的这组每天在校体育活动时间的样本数据,若该校共有800 名初中学生,估计该校每天在校体育活动时间大于1h 的学生人数18(9 分)如图,在平面直角坐标系xOy 中,反比例函数y(k0)的图象经过等边三角形BOC 的顶点 B,OC2,点 A 在反比例函数图象上,连接AC,OA(1)求反比例函数y(k 0)的表达式;(2)若四边形ACBO 的面积是3,求点 A 的坐标19(9 分)如图,

6、在菱形ABCD 中,AC 为对角线,点E,F 分别在 AB,AD 上,BEDF,连接 EF(1)求证:ACEF;(2)延长 EF 交 CD 的延长线于点G,连接 BD 交 AC 于点 O若 BD4,tanG,求 AO 的长20(9 分)襄阳卧龙大桥横跨汉江,是我市标志性建筑之一某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC 和塔冠 BE)进行了测量如图所示,最外端的拉索AB 的底端 A 到塔柱底端C 的距离为121m,拉索 AB 与桥面 AC 的夹角为37,从点A 出发沿 AC 方向前进23.5m,在 D 处测得塔冠顶端E 的仰角为 45 请你求出塔冠BE 的高度(结果精确到0

7、.1m 参考数据sin37 0.60,cos370.80,tan37 0.75,1.41)21(10 分)如图,P 是与弦 AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦 AB 于点 D小腾根据学习函数的经验,对线段 PC,PD,AD 的长度之间的关系进行了探究下面是小腾的探究过程,请补充完整:(1)对于点 C 在上的不同位置,画图、测量,得到了线段PC,PD,AD 的长度的几组值,如下表:位置 1位置 2位置 3位置 4位置 5位置 6位置 7位置 8PC/cm3.443.303.072.702.252.252.642.83PD/cm3.442.692.001.360.96

8、1.132.002.83AD/cm0.000.781.542.303.014.005.116.00在 PC,PD,AD 的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC 2PD 时,AD 的长度约为cm22(10 分)已知:在矩形ABCD 中,E,F 分别是边AB,AD 上的点,过点F 作 EF 的垂线交DC 于点 H,以 EF 为直径作半圆O(1)填空:点A(填“在”或“不在”)O 上;当时,tanAEF 的值是;(2)如图 1,在 EFH 中,当 FEFH 时

9、,求证:ADAE+DH;(3)如图 2,当 EFH 的顶点 F 是边 AD 的中点时,求证:EHAE+DH;(4)如图 3,点 M 在线段 FH 的延长线上,若FM FE,连接 EM 交 DC 于点 N,连接 FN,当 AEAD时,FN 4,HN3,求 tanAEF 的值23(11 分)如图,抛物线yax2+bx+6 经过点 A(2,0),B(4,0)两点,与y 轴交于点C,点 D 是抛物线上一个动点,设点D 的横坐标为m(1m4)连接 AC,BC,DB,DC(1)求抛物线的函数表达式;(2)BCD 的面积等于 AOC 的面积的时,求 m 的值;(3)在(2)的条件下,若点 M 是 x 轴上一

10、动点,点 N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由答案与解析一、选择题(每小题3 分,共 30 分)12sin60的值等于()A1BCD2【答案】C【解析】解:2sin60 2,故选:C22019 年 1 月 3 日,“嫦娥四号”探测器成功着陆在月球背面东经177.6 度、南纬45.5 度附近,实现了人类首次在月球背面软着陆数字177.6 用科学记数法表示为()A0.1776103B1.776102C1.776103D17.76102【答案】B【解析】解:用科学记数法表示较大的数时,

11、一般形式为a10n,其中 1|a|10,n 为整数,据此判断即可 177.61.776102故选:B3下列倡导节约的图案中,是轴对称图形的是()ABCD【答案】C【解析】解:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误故选:C4下列运算正确的是()A2a+3a5a2B(a+2b)2a2+4b2Ca2?a3a6D(ab2)3 a3b6【答案】D【解析】解:直接利用合并同类项法则以及完全平方公式、积的乘方运算

12、法则、同底数幂的乘除运算法则分别化简得出答案A、2a+3a5a,故此选项错误;B、(a+2b)2a2+4ab+4b2,故此选项错误;C、a2?a3a5,故此选项错误;D、(ab2)3 a3b6,正确故选:D5.如图,四边形ABCD 为菱形,A,B 两点的坐标分别是(2,0),(0,1),点 C,D 在坐标轴上,则菱形ABCD 的周长等于()AB4C4D20【答案】C【解析】解:根据菱形的性质和勾股定理解析即可A,B 两点的坐标分别是(2,0),(0,1),AB,四边形ABCD 是菱形,菱形的周长为4,故选:C6.如图,在 ABC 中,ABAC,A30,直线ab,顶点 C 在直线 b 上,直线a

13、 交 AB 于点 D,交AC 与点 E,若 1145,则 2 的度数是()A30B35C40D45【答案】C【解析】解:先根据等腰三角形的性质和三角形的内角和可得ACB75,由三角形外角的性质可得AED 的度数,由平行线的性质可得同位角相等,可得结论AB AC,且 A30,ACB75,在 ADE 中,1 A+AED145,AED 145 30 115,ab,AED 2+ACB,2115 75 40,故选:C7.在学校的体育训练中,小杰投掷实心球的7 次成绩如统计图所示,则这7 次成绩的中位数和平均数分别是()A9.7m,9.9mB9.7m,9.8mC9.8m,9.7mD9.8m,9.9m【答案

14、】B【解析】解:将这7 个数据从小到大排序后处在第4 位的数是中位数,利用算术平均数的计算公式进行计算即可把这 7 个数据从小到大排列处于第4 位的数是9.7m,因此中位数是9.7m,平均数为:(9.5+9.6+9.7+9.7+9.8+10.1+10.2)79.8m,故选:B8.函数 y ax+a 与 y(a0)在同一坐标系中的图象可能是()ABCD【答案】D【解析】解:根据反比例函数与一次函数的图象特点解析即可a 0时,a0,y ax+a 在一、二、四象限,y在一、三象限,无选项符合a 0时,a0,y ax+a 在一、三、四象限,y(a0)在二、四象限,只有D 符合;故选:D9.如图,在菱形

15、ABCD 中,点 E 是 BC 的中点,以C 为圆心、CE 为半径作弧,交CD 于点 F,连接 AE、AF若 AB6,B60,则阴影部分的面积为()A93B92C189D186【答案】A【解析】解:连接AC,根据菱形的性质求出BCD 和 BCAB6,求出 AE 长,再根据三角形的面积和扇形的面积求出即可连接 AC,四边形ABCD 是菱形,AB BC6,B60,E 为 BC 的中点,CE BE3CF,ABC 是等边三角形,ABCD,B60,BCD 180 B 120,由勾股定理得:AE 3,SAEBSAEC63 4.5SAFC,阴影部分的面积SSAEC+SAFCS扇形CEF4.5+4.59 3,

16、故选:A10.二次函数yax2+bx+c(a,b,c 是常数,a0)的自变量x与函数值y 的部分对应值如下表:x 2 1012yax2+bx+ctm2 2n且当 x时,与其对应的函数值y0有下列结论:abc0;2 和 3 是关于 x 的方程 ax2+bx+ct 的两个根;0m+n其中,正确结论的个数是()A0B1C2D3【答案】C【解析】解:当x0 时,c 2,当 x1 时,a+b2 2,a+b0,yax2ax2,abc0,正确;x是对称轴,x 2 时 y t,则 x3 时,yt,2 和 3 是关于 x 的方程 ax2+bx+ct 的两个根;正确;ma+a2,n4a2a2,mn2a2,m+n4

17、a4,当 x时,y0,a,m+n,错误;故选:C二、填空题(每小题3 分,共 15 分)11.分式的值为 0,则 x 的值是【答案】1【解析】解:分式的值为 0,x10 且 x0,x1故答案为112.一个 n 边形的内角和等于720,则 n【答案】6【解析】解:依题意有:(n2)?180 720,解得 n6故答案为:613.在平面直角坐标系xOy 中,点 A(a,b)(a0,b 0)在双曲线y上,点 A关于 x 轴的对称点B在双曲线y,则 k1+k2的值为【答案】0【解析】解:点A(a,b)(a0,b0)在双曲线y上,k1ab;又点 A 与点 B 关于 x 轴的对称,B(a,b)点 B 在双曲

18、线y上,k2 ab;k1+k2 ab+(ab)0;故答案为:014.设 x1,x2是一元二次方程x2x1 0 的两根,则x1+x2+x1x2【答案】0【解析】解:x1、x2是方程 x2x10 的两根,x1+x2 1,x1x2 1,x1+x2+x1x2110故答案为:015.如图,正方形纸片ABCD 的边长为12,E 是边 CD 上一点,连接AE、折叠该纸片,使点A 落在 AE 上的 G 点,并使折痕经过点B,得到折痕BF,点 F 在 AD 上,若 DE5,则 GE 的长为【答案】【解析】解:四边形ABCD 为正方形,AB AD12,BAD D90,由折叠及轴对称的性质可知,ABF GBF,BF

19、 垂直平分AG,BF AE,AHGH,FAH+AFH90,又 FAH+BAH 90,AFH BAH,ABF DAE(AAS),AF DE5,在 RtADF 中,BF13,SABFAB?AFBF?AH,12513AH,AH,AG2AH,AE BF13,GEAEAG13,故答案为:三、解析题(本大题共8 个小题,满分75 分)16(8 分)先化简,再求值:(x1)(x),其中 x+1【答案】解:原式(x1)(x1)?,当 x+1,原式1+【解析】先化简分式,然后将x 的值代入计算即可17(9 分)某校为了解初中学生每天在校体育活动的时间(单位:h),随机调查了该校的部分初中学生根据调查结果,绘制出

20、如下的统计图 和图 请根据相关信息,解析下列问题:()本次接受调查的初中学生人数为,图 中 m 的值为;()求统计的这组每天在校体育活动时间数据的平均数、众数和中位数;()根据统计的这组每天在校体育活动时间的样本数据,若该校共有800 名初中学生,估计该校每天在校体育活动时间大于1h 的学生人数【答案】解:()本次接受调查的初中学生人数为:4 10%40,m%25%,故答案为:40,25;()平均数是:1.5,众数是 1.5,中位数是1.5;()800 720(人),答:该校每天在校体育活动时间大于1h 的学生有720 人【解析】)根据统计图中的数据可以求得本次调查的学生人数,进而求得m 的值

21、;()根据统计图中的数据可以求得这组数据的平均数和众数、中位数;()根据统计图中的数据可以求得该校每天在校体育活动时间大于1h 的学生人数18(9 分)如图,在平面直角坐标系xOy 中,反比例函数y(k0)的图象经过等边三角形BOC 的顶点 B,OC2,点 A 在反比例函数图象上,连接AC,OA(1)求反比例函数y(k 0)的表达式;(2)若四边形ACBO 的面积是3,求点 A 的坐标【答案】解:(1)作 BDOC 于 D,BOC 是等边三角形,OBOC2,ODOC1,BD,SOBDODBD,SOBD|k|,|k|,反比例函数y(k0)的图象在一三象限,k,反比例函数的表达式为y;(2)SOB

22、COC?BD,SAOC32,SAOCOC?yA2,yA2,把 y2代入 y,求得 x,点 A 的坐标为(,2)【解析】(1)作 BD OC 于 D,根据等边三角形的性质和勾股定理求得OD1,BD,进而求得三角形BOD的面积,根据系数k 的几何意义即可求得k,从而求得反比例函数的表达式;(2)求得三角形AOC 的面积,即可求得A 的纵坐标,代入解析式求得横坐标,得出点A 的坐标19(9 分)如图,在菱形ABCD 中,AC 为对角线,点E,F 分别在 AB,AD 上,BEDF,连接 EF(1)求证:ACEF;(2)延长 EF 交 CD 的延长线于点G,连接 BD 交 AC 于点 O若 BD4,ta

23、nG,求 AO 的长【答案】(1)证明:连接BD,如图 1 所示:四边形ABCD 是菱形,AB AD,ACBD,OBOD,BE DF,AB:BEAD:DF,EF BD,AC EF;(2)解:如图2 所示:由(1)得:EFBD,G ADO,tanGtanADO,OAOD,BD4,OD2,OA1【解析】(1)由菱形的性质得出ABAD,ACBD,OBOD,得出 AB:BEAD:DF,证出 EFBD 即可得出结论;(2)由平行线的性质得出G ADO,由三角函数得出tanGtanADO,得出 OAOD,由 BD4,得出 OD2,得出 OA120(9 分)襄阳卧龙大桥横跨汉江,是我市标志性建筑之一某校数学

24、兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC 和塔冠 BE)进行了测量如图所示,最外端的拉索AB 的底端 A 到塔柱底端C 的距离为121m,拉索 AB 与桥面 AC 的夹角为37,从点A 出发沿 AC 方向前进23.5m,在 D 处测得塔冠顶端E 的仰角为 45 请你求出塔冠BE 的高度(结果精确到0.1m 参考数据sin37 0.60,cos370.80,tan37 0.75,1.41)【答案】解:在RtABC 中,tanA,则 BCAC?tanA1210.7590.75,由题意得,CDACAD 97.5,在 RtECD 中,EDC45,EC CD97.5,BE ECBC6.75

25、6.8(m),答:塔冠BE 的高度约为6.8m【解析】根据正切的定义分别求出EC、BC,结合图形计算,得到答案21(10 分)如图,P 是与弦 AB 所围成的图形的外部的一定点,C 是上一动点,连接PC 交弦 AB 于点 D小腾根据学习函数的经验,对线段 PC,PD,AD 的长度之间的关系进行了探究下面是小腾的探究过程,请补充完整:(1)对于点 C 在上的不同位置,画图、测量,得到了线段PC,PD,AD 的长度的几组值,如下表:位置 1位置 2位置 3位置 4位置 5位置 6位置 7位置 8PC/cm3.443.303.072.702.252.252.642.83PD/cm3.442.692.

26、001.360.961.132.002.83AD/cm0.000.781.542.303.014.005.116.00在 PC,PD,AD 的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC 2PD 时,AD 的长度约为cm【答案】解:(1)根据函数的定义,PC、PD 不可能为自变量,只能是AD 为自变量故答案为:AD、PC、PD;(2)描点画出如图图象;(3)PC2PD,即 PDPC,画出 yx,交曲线AD 的值约为 1.59,故答案为1.59(答案不唯一)【解析

27、】(1)按照变量的定义,根据函数的定义,PC、PD 不可能为自变量,只能是AD 为自变量,即可求解;(2)描点画出如图图象;(3)PC2PD,即 PDPC,画出 yx,交曲线AD 的值为所求,即可求解22(10 分)已知:在矩形ABCD 中,E,F 分别是边AB,AD 上的点,过点F 作 EF 的垂线交DC 于点 H,以 EF 为直径作半圆O(1)填空:点A(填“在”或“不在”)O 上;当时,tanAEF 的值是;(2)如图 1,在 EFH 中,当 FEFH 时,求证:ADAE+DH;(3)如图 2,当 EFH 的顶点 F 是边 AD 的中点时,求证:EHAE+DH;(4)如图 3,点 M 在

28、线段 FH 的延长线上,若FM FE,连接 EM 交 DC 于点 N,连接 FN,当 AEAD时,FN 4,HN3,求 tanAEF 的值【答案】解:(1)连接 AO,EAF90,O 为 EF 中点,AOEF,点 A 在 O 上,当时,AEF45,tan AEFtan45 1,故答案为:在,1;(2)EFFH,EFH 90,在矩形 ABCD 中,A D90,AEF+AFE90,AFE+DFH 90,AEF DFH,又 FEFH,AEF DFH(AAS),AF DH,AEDF,ADAF+DFAE+DH;(3)延长 EF 交 HD 的延长线于点G,F 分别是边AD 上的中点,AF DF,A FDG

29、 90,AFE DFG,AEF DGF(ASA),AE DG,EFFG,EF FH,EHGH,GHDH+DGDH+AE,EHAE+DH;(4)过点 M 作 MQAD 于点 Q设 AFx,AEa,FMFEEF FH,EFM 为等腰直角三角形,FEM FMN 45,FMFE,A MQF 90,AEF MFQ,AEF QFM(ASA),AE EQa,AFQM,AE AD,AF DQQMx,DCQM,DCABQM,FE FM,FEM FMN45,FEN HMN,【解析】(1)连接 AO,EAF90,O 为 EF 中点,所以AOEF,因此点 A 在O 上,当时,AEF45,tanAEFtan45 1;(

30、2)证明 AEF DFH,得到 AFDH,AE DF,所以 ADAF+DFAE+DH;(3)延长 EF 交 HD 的延长线于点G,先证明 AEF DGF(ASA),所以 AEDG,EF FG,因为EFFG,所以 EHGH,GHDH+DGDH+AE,即 EHAE+DH;(4)过点 M 作 MQAD 于点 Q设 AFx,AEa,所以 EFM 为等腰直角三角形,FEM FMN45,因此 AEF QFM(ASA),AEEQa,AFQM,AE AD,AFDQ QM 由 FENHMN,得到,所以23(11 分)如图,抛物线yax2+bx+6 经过点 A(2,0),B(4,0)两点,与y 轴交于点C,点 D

31、 是抛物线上一个动点,设点D 的横坐标为m(1m4)连接 AC,BC,DB,DC(1)求抛物线的函数表达式;(2)BCD 的面积等于 AOC 的面积的时,求 m 的值;(3)在(2)的条件下,若点 M 是 x 轴上一动点,点 N 是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N 为顶点的四边形是平行四边形?若存在,请直接写出点M 的坐标;若不存在,请说明理由【答案】解:(1)由抛物线交点式表达式得:ya(x+2)(x4)a(x22x8)ax22ax8a,即8a6,解得:a,故抛物线的表达式为:yx2+x+6;(2)点 C(0,6),将点 B、C 的坐标代入一次函数表达式并解得

32、:直线 BC 的表达式为:yx+6,如图所示,过点D 作 y 轴的平行线交直线BC 与点 H,设点 D(m,m2+m+6),则点 H(m,m+6)SBDCHBOB2(m2+m+6+m6)m2+3m,SACO6 2,即:m2+3m,解得:m1 或 3(舍去 1),故 m3;(3)当 m3 时,点 D(3,),当 BD 是平行四边形的一条边时,如图所示:M、N 分别有三个点,设点 N(n,n2+n+6)则点 N 的纵坐标为绝对值为,即|n2+n+6|,解得:n 1 或 3(舍去)或1,故点 N(N、N)的坐标为(1,)或(1,)或(1,),当点 N(1,)时,由图象可得:点M(0,0),当 N的坐标为(1,),由中点坐标公式得:点M(,0),同理可得:点M坐标为(,0),故点 M 坐标为:(0,0)或(,0)或(,0);当 BD 是平行四边形的对角线时,点 B、D 的坐标分别为(4,0)、(3,)设点 M(m,0),点 N(s,t),由中点坐标公式得:,而 ts2+s+6,解得:t,s 1,m8,故点 M 坐标为(8,0);故点 M 的坐标为:(0,0)或(,0)或(,0)或(8,0)【解析】(1)由抛物线交点式表达,即可求解;(2)利用 SBDCHB OB,即可求解;(3)分 BD 是平行四边形的一条边、BD 是平行四边形的对角线两种情况,分别求解即可

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁