《初二数学《勾股定理》ppt课件.ppt》由会员分享,可在线阅读,更多相关《初二数学《勾股定理》ppt课件.ppt(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、勾勾 股股 定定 理理C CB BA A一、情景引入一、情景引入 一个美丽的故事:世界的许多科学家正在试探着寻找“外星人”,人们为了取得与外星人的联系,想了很多方法。早在1820年,德国著名数学家高斯曾提出,可在西伯利亚的森林里伐出一片直角三角形的空地,然后在这片空地里种上麦子,以三角形的三条边为边种上三片正方形的松树林,如果有外星人路过地球附近,看到这个巨大的数学图形,便会知道:这个星球上有智慧生命。我国数学家华罗庚也曾提出:若要沟通两个不同星球的信息交往,最好利用太空飞船带上这个图形,并发射到太空中去。图甲图甲 图乙图乙A A的面积的面积B B的面积的面积C C的面积的面积4 44 48
2、8A AB BC CS SA A+S+SB B=S=SC CC C图甲图甲1.1.观察图甲,小方格观察图甲,小方格的边长为的边长为1.1.正方形正方形A A、B B、C C的的面积各为多少?面积各为多少?正方形正方形A A、B B、C C的的 面积有什么关系?面积有什么关系?A AB BC C C C图乙图乙2.2.观察图乙,小方格观察图乙,小方格的边长为的边长为1.1.正方形正方形A A、B B、C C的的面积各为多少?面积各为多少?9 916162525S SA A+S+SB B=S=SC C正方形正方形A A、B B、C C的的 面积有什么关系?面积有什么关系?4 44 48 8A AB
3、 BC CS SA A+S+SB B=S=SC C图甲图甲图甲图甲 图乙图乙A A的面积的面积B B的面积的面积C C的面积的面积A AB BC C图乙图乙2.2.观察图乙,小方格观察图乙,小方格的边长为的边长为1.1.9 916162525S SA A+S+SB B=S=SC C正方形正方形A A、B B、C C的的 面积有什么关系?面积有什么关系?4 44 48 8A AB BC CS SA A+S+SB B=S=SC C图甲图甲图甲图甲 图乙图乙A A的面积的面积B B的面积的面积C C的面积的面积a ab bc ca ab bc cA AB BC CC C图乙图乙S SA A+S+SB
4、 B=S=SC CS SA A+S+SB B=S=SC C图甲图甲a ab bc ca ab bc c3.3.猜想猜想a a、b b、c c 之间的关系?之间的关系?a2+b2=c2勾股定理勾股定理(毕达哥拉斯定理毕达哥拉斯定理)(gougu theorem)如果直角三角形两直角边分别为a,b,斜边为c,那么 即直角三角形两直角边的平方和等于即直角三角形两直角边的平方和等于 斜边的平方斜边的平方.ac勾勾弦弦b股股验证命题得出定理四个相等的直角三角形,如右图,通过图形我们可以看到,正方形FGHI的面积等于正方形ABCD加上四个直角三角形面积的和。若设AFa,FBb,ABc,那么有移动探究:用移
5、动点工具移动点F,当点F在正方形ABCD内部的时候,如下图:这时候正方形FGHI的边长等于,所以有经过论证得出这个命题是成立,即为勾股定理。实践应用拓展提高 (1).在RtABC中,=90.已知:a=5,=12,则c=_;(2)已知:a=40,c=41,则b=_;(3)已知:c=25,b=7,则a=_;(4)已知:a:b=2:3,c=则a=_,b=_例例2.2.如图,池塘边有两点如图,池塘边有两点A A、B B,点,点C C是与是与BABA方向成直角的方向成直角的ACAC方向上的一点,测得方向上的一点,测得CB=250mCB=250m,AC=70m AC=70m,你能求出,你能求出A A、B
6、B两点两点间的距离吗?间的距离吗?1.1.求下列图中表示边的未知数求下列图中表示边的未知数x x、y y、z z的值的值.8181144144x xy yz z625625576576144144169169比比一一比比看看看看谁谁算算得得快快!2.2.求下列直角三角形中未知边的长求下列直角三角形中未知边的长:可用勾股定理建立方程可用勾股定理建立方程.方法小结方法小结:8 8x x171716162020 x x12125 5x x、湖的两端有、湖的两端有A A、两点,从与、两点,从与A A方向成直方向成直角的角的BCBC方向上的点方向上的点C C测得测得CA=130CA=130米米,CB=1
7、20,CB=120米米,则则ABAB为为()()ABCA.50A.50米米 B.120B.120米米 C.100C.100米米 D.130D.130米米130120?A20022002年世界数学家大会会标年世界数学家大会会标邮票赏邮票赏邮票赏邮票赏析析析析这是这是19551955年希腊曾经发行的年希腊曾经发行的纪念一位数学家的邮票。纪念一位数学家的邮票。两千多年前,古希腊有个哥拉两千多年前,古希腊有个哥拉 斯学派,他们首先发现了勾股定理,因此斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。年希腊曾经发行了一
8、枚纪念票。定理。为了纪念毕达哥拉斯学派,定理。为了纪念毕达哥拉斯学派,1955勾勾 股股 世世 界界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前国家之一。早在三千多年前 两千多年前,古希腊有个毕达哥拉斯两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾
9、股定理,因此在学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,理。为了纪念毕达哥拉斯学派,1955年年希腊曾经发行了一枚纪念邮票。希腊曾经发行了一枚纪念邮票。我国是最早了解勾股定理的我国是最早了解勾股定理的国家之一。早在三千多年前,周国家之一。早在三千多年前,周朝数学家商高就提出,将一根直朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即股等于四,那么弦就等于五,即“勾三、股四、弦五勾三、股四、弦五”,它被记,它被记载于我国古代著名的数学著作载于我国古代著名的数学著作周髀算经周髀算经中。中。