《初二数学《勾股定理》PPT课件 (2).ppt》由会员分享,可在线阅读,更多相关《初二数学《勾股定理》PPT课件 (2).ppt(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、C CB BA A如图,一根电线杆在离地面如图,一根电线杆在离地面5 5米处断裂,米处断裂,电线杆顶部落在离电线杆底部电线杆顶部落在离电线杆底部1212米处,电米处,电线杆折断之前有多高?线杆折断之前有多高?5米米BAC12米米一、情景引入一、情景引入电线杆折断之前的高度电线杆折断之前的高度=BC+AB=5=BC+AB=5米米+AB+AB的长的长图甲图甲 图乙图乙A A的面积的面积B B的面积的面积C C的面积的面积4 44 48 8A AB BC CS SA A+S+SB B=S=SC CC C图甲图甲1.1.观察图甲,小方格观察图甲,小方格的边长为的边长为1.1.正方形正方形A A、B B
2、、C C的的面积各为多少?面积各为多少?正方形正方形A A、B B、C C的的 面积有什么关系?面积有什么关系?A AB BC C C C图乙图乙2.2.观察图乙,小方格观察图乙,小方格的边长为的边长为1.1.正方形正方形A A、B B、C C的的面积各为多少?面积各为多少?9 916162525S SA A+S+SB B=S=SC C正方形正方形A A、B B、C C的的 面积有什么关系?面积有什么关系?4 44 48 8A AB BC CS SA A+S+SB B=S=SC C图甲图甲图甲图甲 图乙图乙A A的面积的面积B B的面积的面积C C的面积的面积A AB BC C图乙图乙2.2.
3、观察图乙,小方格观察图乙,小方格的边长为的边长为1.1.9 916162525S SA A+S+SB B=S=SC C正方形正方形A A、B B、C C的的 面积有什么关系?面积有什么关系?4 44 48 8A AB BC CS SA A+S+SB B=S=SC C图甲图甲图甲图甲 图乙图乙A A的面积的面积B B的面积的面积C C的面积的面积a ab bc ca ab bc cA AB BC CC C图乙图乙S SA A+S+SB B=S=SC CS SA A+S+SB B=S=SC C图甲图甲a ab bc ca ab bc c3.3.猜想猜想a a、b b、c c 之间的关系?之间的关系
4、?a2 +b2 =c2 在方格纸上在方格纸上,画画一个顶点都在格点一个顶点都在格点上的直角三角形上的直角三角形;并并分别以这个直角三分别以这个直角三角形的各边为一边角形的各边为一边向三角形外作正方向三角形外作正方形形,仿照上面的方法仿照上面的方法计算以斜边为一边计算以斜边为一边的正方形的面积的正方形的面积. 在方格纸上在方格纸上,画画一个顶点都在格点一个顶点都在格点上的直角三角形上的直角三角形;并并分别以这个直角三分别以这个直角三角形的各边为一边角形的各边为一边向三角形外作正方向三角形外作正方形形,仿照上面的方法仿照上面的方法计算以斜边为一边计算以斜边为一边的正方形的面积的正方形的面积.勾股定
5、理(毕达哥拉斯定理)(gougu theorem) 如果直角三角形两直角如果直角三角形两直角边分别为边分别为a, b,斜边为,斜边为c,那么那么 即直角三角形两直角边的平方和等于即直角三角形两直角边的平方和等于 斜边的平方斜边的平方.222cbaac勾勾弦弦b股股 两千多年前,古希腊有个哥拉两千多年前,古希腊有个哥拉 斯学派,他们首先发现了勾股定理,因此斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,定理。为了纪念毕达哥拉斯学派,1955国家之一。早
6、在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前国家之一。早在三千多年前 两千多年前,古希腊有个毕达哥拉斯两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定国外人们通常称勾股定理为毕
7、达哥拉斯定理。为了纪念毕达哥拉斯学派,理。为了纪念毕达哥拉斯学派,1955年年希腊曾经发行了一枚纪念邮票。希腊曾经发行了一枚纪念邮票。 我国是最早了解勾股定理的我国是最早了解勾股定理的国家之一。早在三千多年前,周国家之一。早在三千多年前,周朝数学家商高就提出,将一根直朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即股等于四,那么弦就等于五,即“勾三、股四、弦五勾三、股四、弦五”,它被记,它被记载于我国古代著名的数学著作载于我国古代著名的数学著作周髀算经周髀算经中。中。这是这是19551955年希腊曾经发行的年希腊曾经发行的纪念
8、一位数学家的邮票。纪念一位数学家的邮票。20022002年世界数学家大会会标年世界数学家大会会标如图,一根电线杆在离地面如图,一根电线杆在离地面5 5米处断裂,米处断裂,电线杆顶部落在离电线杆底部电线杆顶部落在离电线杆底部1212米处,电米处,电线杆折断之前有多高?线杆折断之前有多高? 电线杆折断之前的高度电线杆折断之前的高度 =BC+AB=5=BC+AB=5米米+ +米米米米5米米BAC12米米解:解:C C, 在在t t中,中, ,, , 根据勾股定理,根据勾股定理,22222212516913ABACBCABAB即1. 1.求下列图中表示边的未知数求下列图中表示边的未知数x x、y y、
9、z z的值的值. .8181144144x xy yz z625625576576144144169169比比一一比比看看看看谁谁算算得得快!快!2.2.求下列直角三角形中未知边的长求下列直角三角形中未知边的长: :可用勾股定理建立方程可用勾股定理建立方程.方法小结方法小结:8 8x x171716162020 x x12125 5x x、如图、如图, ,一个高一个高3 3 米米, ,宽宽4 4 米的大门米的大门, ,需在相需在相对角的顶点间加一个加固木条对角的顶点间加一个加固木条, ,则木条的长则木条的长为为( )( )A.3A.3米米 B.4B.4米米 C.5C.5米米 D.6D.6米米C
10、、湖的两端有、湖的两端有A A、两点,从与、两点,从与A A方向成直方向成直角的角的BCBC方向上的点方向上的点C C测得测得CA=130CA=130米米,CB=120,CB=120米米, ,则则ABAB为为( )( )ABCA.50A.50米米 B.120B.120米米 C.100C.100米米 D.130D.130米米130120?A3 3、在波平如静的湖面上在波平如静的湖面上, ,有一朵美丽的红莲有一朵美丽的红莲 , ,它高它高出水面出水面1 1米米 , ,一阵大风吹过一阵大风吹过, ,红莲被吹至一边红莲被吹至一边, ,花朵花朵齐及水面齐及水面, ,如果知道红莲移动的水平距离为如果知道红莲移动的水平距离为2 2米米 , ,问问这里水深多少这里水深多少? ?x+1x+1B BC CA AH H1 12 2? ?x xx x2 2+2+22 2=(x+1)=(x+1)2 2