《行测资料分析题十大速算解题技巧全解.doc》由会员分享,可在线阅读,更多相关《行测资料分析题十大速算解题技巧全解.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、资料分析题十大速算解题技巧全解【速算技巧一:估算法】要点:“估算法“毫无疑问是资料分析题当中的速算第一法,在所有计算进行之前必须考虑能否先行估算。所谓估算,是在精度要求并不太高的情况下,进行粗略估值的速算方式,一般在选项相差较大,或者在被比较数据相差较大的情况下使用。估算的方式多样,需要各位考生在实战中多加训练与掌握。 进行估算的前提是选项或者待比较的数字相差必须比较大,并且这个差别的大小决定了“估算“时的精度要求。【速算技巧二:直除法】要点: “直除法“是指在比较或者计算较复杂分数时,通过“直接相除“的方式得到商的首位(首一位或首两位),从而得出正确答案的速算方式。“直除法“在资料分析的速算
2、当中有非常广泛的用途,并且由于其“方式简单“而具有“极易操作“性。“直除法“从题型上一般包括两种形式: 一、 比较多个分数时,在量级相当的情况下,首位最大/小的数为最大/小数; 二、 计算一个分数时,在选项首位不同的情况下,通过计算首位便可选出正确答案 “直除法“从难度深浅上来讲一般分为三种梯度: 一、 简单直接能看出商的首位; 二、 通过动手计算能看出商的首位; 三、 某些比较复杂的分数,需 计算分数的“倒数“的首位来判定答案。 【速算技巧三:截位法】要点: 所谓“截位法“,是指“在精度允许的范围内,将计算过程当中的数字截位(即只看或者只取前几位),从而得到精度足够的计算结果“的速算方式。
3、在加法或者减法中使用“截位法“时,直接从左边高位开始相加或者相减( 同时注意下一位是否需要进位与借位),直到得到选项求精度的答案为止。 在乘法或者除法中使用“截位法“时,为了使所得结果尽可能精确,需 注意截位近似的 方向: 一、 大(或缩小)一个乘数因子,则需缩小(或 大)另一个乘数因子; 二、 大(或缩小)被除数,则需 大(或缩小)除数。 如果是求“两个乘积的和或者差(即 a bc d)“,应该注意: 三、 大(或缩小)加号的一侧,则需缩小(或 大)加号的另一侧; 四、 大(或缩小)减号的一侧,则需 大(或缩小)减号的另一侧。 到底采取哪个近似方向由相近程度和截位后计算难度决定。 一般说来,
4、在乘法或者除法中使用“截位法“时,若答案需要有 N 位精度,则计算过程的 数据需要有 N+1 位的精度,但具体情况还得由截位时误差的大小以及误差的抵消情况来决 定;在误差较小的情况下,计算过程中的数据甚至可以不满足上述截位方向的要求。所以应 用这种方法时,需 考生在做题当中多加熟悉与训练误差的把握,在可以使用其它方式得到 答案并且截位误差可能很大时,尽量避免使用乘法与除法的截位法。 【速算技巧四:化同法】 要点: 所谓“化同法“,是指“在比较两个分数大小时,将这两个分数的分子或分母化为相同或相近,从而达到简化计算“的速算方式。一般包括三个层次:一、 将分子(或分母)化为完全相同,从而只需 再看
5、分母(或分子)即可; 二、 将分子(或分母)化为相近之后,出现“某一个分数的分母较大而分子较小“或“某一 个分数的分母较小而分子较大“的情况,则可直接判断两个分数的大小。 三、 将分子(或分母)化为非常接近之后,再利用其它速算技巧进行简单判定。 事实上在资料分析试题当中,将分子(或分母)化为完全相同一般是不可能达到的,所以化同法更多的是“化为相近“而非“化为相同“。 【速算技巧五:差分法】 要点: “差分法“是在比较两个分数大小时,用“直除法“或者“化同法“等其它速算方式难以解决时可以采取的一种速算方式。 适用形式: 两个分数做比较时,若其中一个分数的分子与分母都比另外一个分数的分子与分母分别
6、 仅仅大一点,这时使用“直除法“、“化同法“经常很难比较出大小关系,而使用“差分法“却可以很好的解决这样的问题。基础定义: 在满足“适用形式“的两个分数中,我们定义分子与分母都比较大的分数叫“大分数“,分子与分母都比较小的分数叫“小分数“,而这两个分数的分子、分母分别做差得到的新的分数 我们定义为“差分数“。例如:324/53.1 与 313/51.7 比较大小,其中 324/53.1 就是“大分数“,313/51.7 就是“小分数“,而(324-313)/(53.1-51.7)=11/ 1.4 就是“差分数“。 “差分法“使用基本准则:“差分数“代替“大分数“与“小分数“作比较: 1、 若差
7、分数比小分数大,则大分数比小分数大; 2、 若差分数比小分数小,则大分数比小分数小; 3、 若差分数与小分数相等,则大分数与小分数相等。 比如上文中就是“11/ 1.4 代替 324/53.1 与 3 13/51.7 作比较“,因为 11/ 1.4313/51.7(可以通过“直除法“或者“化同法“简单得到) ,所以 324/53.1313/51.7。 特别注意: 一、“差分法“本身是一种“精算法“而非“估算法“,得出来的大小关系是精确的关系而非 粗略的关系; 二、“差分法“与“化同法“经常联系在一起使用,“化同法紧接差分法“与“差分法紧接化同 法“是资料分析速算当中经常遇到的两种情形。 三、“
8、差分法“得到“差分数“与“小分数“做比较的时 ,还经常需要用到“直除法“。 四、如果两个分数相隔非常近,我们甚至需 反复运用两次“差分法“,这种情况相对比 较复杂,但如果运用熟练,同样可以大幅度简化计算。 【速算技巧六:插值法】 要点: “插值法“是指在计算数值或者比较数大小的时,运用一个中间值进行“参照比较“的速算方式,一般情况下包括两种基本形式: 一、在比较两个数大小时,直接比较相对 难,但这两个数中间明显插了一个可以进行 参照比较并且易于计算的数,由此中间数可以迅速得出这两个数的大小关系。 比如说 A 与 B 的比较,如果可以找到一个数 C ,并且容易得到 AC ,而 B AB 。 二、
9、在计算一个数值 f 的时 ,选项给出两个较近的数 A 与 B 难以判断,但我们可以容易的找到 A 与 B 之间的一个数 C,比如说 AB0 ,且 CD0 ,则有: 1) A+CB+D 2) A-DB-C 3) A CB D 4) A/DB/C 这四个关系式即上述四个例子所想阐述的四个数学不等关系,是我们在做题当中经常需要用到的非常简单、非常基础的不等关系,但却是考生容易忽略,或者在考场之上容易漏掉的数学关系,其本质可以用“放缩法“来解释。 【速算技巧九:增长率相关速算法】 要点: 计算与增长率相关的数据是做资料分析题当中经常遇到的题型,而这类计算有一些常用的速算技巧,掌握这些速算技巧对于迅速解
10、答资料分析题有着非常重要的辅助作用。 两年混合增长率公式: 如果第二期与第三期增长率分别为 r1 与 r2 ,那么第三期相对于第一期的增长率为:r 1+r2+r1 r2 增长率化除为乘近似公式: 如果第二期的值为 A ,增长率为 r ,则第一期的值 A : A= A/( 1+r)A ( 1-r) (实际上左式略大于右式,r 越小,则误差越小,误差量级为 r2) 平均增长率近似公式: 如果 N 年间的增长率分别为 r1 、r2 、r3 rn ,则平均增长率: r上述各个数的算术平均数 (实际上左式略小于右式,增长率越接近,误差越小)求平均增长率时特别注意问题的表述方式,例如: 1、“从 2004
11、 年到 2007 年的平均增长率“一般表示不包括 2004 年的增长率; 2、“2004 、2005 、2006 、2007 年的平均增长率“一般表示包括 2004 年的增长率。 “分子分母同时 大/缩小型分数“变化趋势判定: 1、A/B 中若 A 与 B 同时 大,则若 A 增长率大,则 A/B 大;若 B 增长率大,则 A/B 缩小;A/B 中若 A 与 B 同时缩小,则若 A 减少得快,则 A/B 缩小;若 B 减少得快, 则 A/B 大。 2、A/(A+B) 中若 A 与 B 同时 大,则若 A 增长率大,则 A/(A+B) 大;若 B 增长率 大,则 A/(A+B)缩小;A/(A+B
12、) 中若 A 与 B 同时缩小,则若 A 减少得快,则A/(A+B)缩小 ;若 B 减少得快,则 A/(A+B) 大。多部分平均增长率: 如果量 A 与量 B 构成总量“A+B“,量 A 增长率为 a,量 B 增长率为 b ,量“A+B“ 的增长 率为 r ,则 A/B=(r-b)/(a-r) ,一般用“十字交叉法“来简单计算。 注意几点问题: 1、 r 一定是介于 a、b 之间的,“十字交叉“相减的时 ,一个 r 在前,另一个 r 在后; 2、算出来的比例是未增长之前的比例,如果 计算增长之后的比例,应该在这个比例 上再乘以各自的增长率。 等速率增长结论: 如果某一个量按照一个固定的速率增长
13、,那么其增长量将越来越大,并且这个量的数值成“等比数列“,中间一项的平方等于两边两项的乘积。 【速算技巧十:综合速算法】 要点: “综合速算法“包含了我们资料分析试题当中众多体系性不如前面九大速算技巧的速算方式,但这些速算方式仍然是提高计算速度的有效手段。平方数速算: 牢记常用平方数,特别是 11-30 以内数的平方,可以很好提高计算速度: 121、144、169、196、225、256、289、324、361、400、441、484、529、576、625、676、729、784、841、900 尾数法速算: 因为资料分析试题当中牵涉到的数据几乎都是通过近似后得到的结果,所以一般我们计算的时
14、 多强调首位估算,而尾数往往是微不足道的。因此资料分析当中的尾数法只适用于未经近似或者不需 近似的计算之中。历史数据证明,国考试题资料分析基本上不能用到尾数法,但在 方考题的资料分析当中,尾数法仍然可以有效的简化计算。错位相加/减: A 9 型速算技巧 A 9= A 10-A; 如:7439=7430-743=6687 A 9.9 型速算技巧:A 9.9= A 10+A10; 如:7439.9=7430-74.3=7355.7 A 11 型速算技巧: A 11= A 10+A; 如:74311=7430+743=8173 A 101 型速算技巧: A 101= A 100+A; 如:74310
15、1=74300+743=75043 乘/ 除以 5、25 、125 的速算技巧: A 5 型速算技巧:A 5= 10A2;A5 型速算技巧:A5= 0.1A2 例 8739.455=87394.52=43697.25 36.8435=3.6843 2=7.3686 A25 型速算技巧:A 25= 100A4;A 25 型速算技巧:A25=0.01A4 例 723425=7234004= 180850 371425=37.14 4= 148.56 A125 型速算技巧:A125= 1000A8;A125 型速算技巧:A125=0.00 1A8 例 873625=87360008=1092000 4 115125=4.115 8=32.92 减半相加: A1.5 型速算技巧:A1.5= A+A2; 例 34061.5=3406+34062=3406+1703=5109 “首数相同尾数互补“型两数乘积速算技巧: 积的头=头 (头+1);积的尾=尾 尾