《五年级数学下册总复习知识点归纳.docx》由会员分享,可在线阅读,更多相关《五年级数学下册总复习知识点归纳.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、五年级数学下册总复习知识点归纳第一部分 数与代数 (一)数的相识 学问点一:数的意义和分类 自然数、整数、正数和负数、分数、百分数、小数 (一)整数 1 、整数的意义 自然数和0都是整数。 像-1,-2,-3这样的数也叫整数。整数包括正整数、0、负整数。 2 、自然数 我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用0表示。0是最小的自然数。3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。无论是整数还是小数,相邻两个计数单位之间的进率都是10。4、 数位及数位依次表 计数
2、单位根据肯定的依次排列起来,它们所占的位置叫做数位。 5、数的整除 整数a除以整数b(b 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。 假如数a能被数b(b 0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。倍数和因数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的因数。一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。个位上是0、
3、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。最小的偶数是0,最小的奇数是1。自然数按能否被2 整除的特征可分为奇数和偶数。一个数,假如只有1和它本身两个因数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。最小
4、的质数是2 一个数,假如除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。最小的合数是4。1既不是质数也不是合数,自然数除了1外,不是质数就是合数。假如把自然数按其因数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数 28=227 几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做这几个数的最大公因数,例如12的因数有1、2、3、4、6、12;18的因数有
5、1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公因数,6是它们的最大公因数。公因数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种状况: 1和任何自然数互质。相邻的两个自然数互质。 两个不同的质数互质。 当合数不是质数的倍数时,这个合数和这个质数互质。例如:15和7互质,14和7不互质。两个合数的公因数只有1时,这两个合数互质。假如较小数是较大数的因数,那么较小数就是这两个数的最大公因数。假如两个数是互质数,它们的最大公因数就是1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6 、8、10、12、14、16、1
6、8 3的倍数有3、6、9、12、15、18 其中6、12、是2、3的公倍数,6是它们的最小公倍数。假如较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。假如两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,始终除到商是质数为止,再把除数和商写成连乘的形式。求几个数的最大公因数的方法是:先用这几个数的公因数连续去除,始终除到所得的商只有公因数1为止,然后把全部的除数连乘求积,这个积就是这几个数的的最大公因数 。求几个数的最小公倍数的方法是:先用这几个数(或其
7、中的部分数)的公因数去除,始终除到互质(或两两互质)为止,然后把全部的除数和商连乘求积,这个积就是这几个数的最小公倍数。(二)小数 1 小数的意义 把整数1平均分成10份、100份、1000份 得到的非常之几、百分之几、千分之几 可以用小数表示。一位小数表示非常之几,两位小数表示百分之几,三位小数表示千分之几 在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“非常之一”和整数部分的最低单位“个”之间的进率也是10。2小数的分类 有限小数:小数部分的数位是有限的小数,叫做有限小数。例如: 41.7 、 25.3 、 0.23 都是有限小数。无限小数:小数部分的数位是无限的小
8、数,叫做无限小数。例如: 4.33 3.1415926 无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如: 循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如: 3.555 0.0333 12.109109 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如: 3.99 的循环节是“ 9 ” , 0.5454 的循环节是“ 54 ” 。写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。假如循环 节只有 一个数字,就只在它的上面
9、点一个点。例如: 3.777 简写作 0.5302302 简写作 。(三)分数 1 分数的意义 把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。表示其中的一份的数,叫做分数单位。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。2 分数的分类 真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3 约分和通分 把一个分数化成同它相等但是分子、分母都比较小的分数
10、 ,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数表示的两个数量间的关系,而不是表示一种数量,所以不带单位名称。(五) 正数和负数。全部正数都比0大,全部负数都比0小。二 方法 (一)数的读法和写法 1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先根据个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。3000600(读成“三百万六百”或“三百万零六百”都对 2. 整数的写
11、法:分级画数级线,一级一级地写。(二)数的改写 一个较大的多位数,为了读写便利,经常把它改写成用“万”或“亿”作单位的数。有时还可以依据须要,省略这个数某一位后面的数,写成近似数。1. 精确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的精确数。例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。2. 近似数:依据实际须要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如: 1302490015 省略亿后面的尾数是 13 亿。3. 四舍五入法:要省略的尾数的最
12、高位上的数是4 或者比4小,就把尾数去掉;假如尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。(三)数的互化 1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。3. 一个最简分数,假如分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;假如分母中含有2和5 以外的质因数,这个分数就
13、不能化成有限小数。4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(四) 约分和通分 约分的方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三 性质和规律 (一)商不变的规律 商不变的规律:在除法里,被除
14、数和除数同时扩大或者同时缩小相同的倍数,商不变。(二)小数的性质 小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的改变 1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍 2. 小数点向左移动一位,原来的数就缩小 3. 小数点向左移或者向右移位数不够时,要用“0“补足位。(四)分数的基本性质 分数的基本性质:分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变。(五)分数与除法的关系 1. 被除数除数= 被除数/除数 被除数 相当于分子,除数相当于分母。
15、2. 因为零不能作除数,所以分数的分母不能为零。(二)数的运算 学问点一:四则运算的意义 1、加法的意义:把两个数合并成一个数的运算。2、减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算。3、整数乘法的意义:求几个相同加数的和的简便运算。4、小数乘法的意义: 小数乘整数 与整数乘法的意义相同,也是求几个相同加数的和的简便运算; 一个数乘小数 求这个数的非常之几、百分之几是多少。5、分数乘法的意义: 分数乘整数 与整数乘法的意义相同,也是求几个相同加数的和的简便运算; 一个数乘分数 就是求这个数的几分之几是多少。6、除法的意义:已知两个因数的积和其中的一个因数,求另一个因数的运算。
16、学问点二:四则运算的法则 整数加减法,小数加减法,分数加减法,整数乘法,分数乘法,整数除法,小数除法,分数除法 学问点三:四则混合运算 加法和减法叫做第一级运算,乘法和除法叫做其次级运算。在一个没有括号的算式里,假如只含有同一级运算,要从左往右依次计算;假如含有两级运算,要先做其次级运算,再做第一级运算。在一个有括号的算式里,要先算小括号里面,再算中括号里面的,最终算大括号里面的。学问点四:运用 定律,使计算简便 加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc) 乘法安排律:a(b+c)=ab+ac 学问点五:通
17、过运算解决问题 (三)式与方程 学问点一:用字母表示数、运算定律和计算公式 学问点二:方程和等式 1、等式:表示相等关系的式子叫等式。有“=” 2、方程:含有未知数的等式叫方程。3、等式和方程的关系:全部的方程都是等式,但等式不肯定是方程。4、方程的解:使方程左右两边相等的未知数的值,叫方程的解。5、解方程:求方程的解的过程,叫解方程。学问点三:列方程解应用题的一般步骤 1、弄清题意,找出未知数并用x表示。2、找出题中数量间的相等关系,并依据等量关系列出方程。3、解方程,求出未知数的值。4、检验并作答。(四)常见的量 学问点:常见的计量单位及其进率 1、长度单位: 常见长度单位: 千米(km)
18、 米(m) 分米(dm) 厘米(cm) 毫米(mm) 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 2、面积单位: 常见的面积单位: 平方千米(km) 公顷(hm) 平方米(m) 平方分米(dm) 平方厘米(cm) 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 3、体积单位: 常见的体积单位: 立方米(m) 立方分米(dm) 立方厘米(cm) 升(L) 毫升(ml) 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1立方毫米 1升=1000毫升 1立方分米=1升 1立方厘米=1毫升 4、质
19、量单位: 常见的质量单位: 吨(t) 千克(kg) 克(g) 1吨=1000千克 1千克=1000克 5、时间单位: 常见的时间单位: 世纪 年 月 日 时 分 秒 1世纪=100年 1年=12个月 28天(平年二月) 1个月= 29天(闰年二月) 30天(四、六、九、十一月) 31天(一、三、五、七、八、十、十二月) 1天=24小时 1小时=60分 1分=60秒 6、人民币的单位: 常用的人民币: 元 角 分 1元=10角 1角=10分 学问点一:比和比例的联系与区分 比 比例 意义 两数相除又叫两个数的比 表示两个比相等的式子叫做比例 各部分名称 0.8 : 0.4 = 2 前项 比号 后
20、项 比值 2 : 3 = 6 :9 外项 内项 内项 外项 基本性质 比的前项和后项都乘上或除以相同的数(0除外),比值不变 在比例中,两外项之积等于两内项之积 化简比的依据 解比例的依据 其次部分 空间与图形 (一)图形的相识与测量 学问点一:平面图形的相识 1、直线、射线和线段 (1)联系与区分 名称 意义 特点 线段 直线上两点间的一段叫做线段。线段有两个端点,它可以度量长度。射线 把线段的一端无限延长,就得到一条射线。射线只有一个端点,它是无限长的,不能度量长度。直线 把线段的两端无限延长,就可以得到一条直线。直线没有端点,它是无限长的,不能度量长度。(2)垂直与平行 a、垂直和垂线:
21、两条直线相交成直角时,这两条直线相互垂直。其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 b、平行线:在同一平面内,不相交的两条直线叫做平行线。两条平行线之间的距离相等。 同一平面内的两条直线不是平行,就是相交。c、点到直线的距离:从直线外的一点向该直线引垂线,从这点到垂足的线段的长,叫做这个点到直线的距离。2、角的相识 (1)角的意义: 从一点引出的两条射线所组成的图形叫做角。角的大小与边的长短无关,与两边叉开的大小有关。(2)角的分类: 锐角、直角、钝角、平角、周角. 3、三角形 (1)三角形的意义: 三角形是由三条线段首尾相接围成的图形。(2)三角形的特性: 三角形具有稳定
22、性。(3)三角形的分类: 按角分:锐角三角形、直角三角形、钝角三角形 按边分:不等边三角形、等腰三角形、等边三角形(正三角形) 1、 四边形的分类 名称 一般四边形 平行四边形 长方形 正方形 梯形 图形 特征 四条边围成 对边平行且相等 有一个角是直角的平行四边形 四边都相等的长方形 只有一组对边平行的四边形 5、圆 (1)圆的意义: 圆是平面上的一种曲线图形。圆上随意一点到圆心的距离都相等。(2)圆的各部分名称: 圆心(o)、直径(d)、半径(r) (3)圆的特征: a、在同圆或等圆中,d=2r或r=。b、圆是轴对称图形,圆的直径所在的直线都是它的对称轴,因此圆有多数条对称轴。学问点二:平
23、面图形的周长和面积 1、周长的意义:围成一个图形的全部边长的总和,叫做这个图形的周长。2、平面图形的周长计算公式: 名称 长方形 正方形 平行 四边形 梯形 三角形 圆 图形 周长公式 文字公式 长方形的周长=(长+宽)2 正方形的周长=边长4 平行四边形的周长=4条边长总和 梯形周长=上、下底加上两腰 三角形周长=三边和 圆周长=圆周率直径 字母公式 C=2(a+b) C=4a C=2(a+b) C=a+b+c+d C=a+b+c C=d C=2r 3、圆周率: 圆的周长与直径的比值叫做圆周率,用“”表示。圆周率是一个无限不循环小数,=3.14159,在计算时一般只取它的两位小数,即3.14
24、. 4、面积的意义: 物体的表面或围成的平面图形的大小,叫做它们的面积。5、平面图形面积的计算公式: 名称 长方形 正方形 平行 四边形 梯形 三角形 圆 图形 面积公式 文字公式 长方形的面积=长宽 正方形的面积=边长边长 平行四边形的面积=底高 梯形面积=(上底+下底)高2 三角形面积=底高2 圆面积=圆周率半径的平方 字母公式 S=ab S=a S=ah S=(a+b)h S=ah S=r 学问点三:立体图形的相识 1、长方体和正方体的特点: 相同点:长方体和正方体都有6个面,8个顶点和12条棱。 不同点:长方体至少有4个面是长方形,而正方体6个面都是正方形。 联系:正方体可以看作是特别
25、的长方体。2、圆柱和圆锥的特点: (1)圆柱: 圆柱的两个圆面叫底面,四周的面叫侧面。上、下两底面之间的距离叫圆柱的高。圆柱有多数条高。(2)圆锥: 圆锥的圆面叫底面,四周的曲面叫侧面。顶点究竟面圆心的距离叫圆锥的高。圆锥只有一条高。3、从不同方向看到的立体图形的形态: (1)长方体:从上、下、前、后、左、右看一般会看到长方形,特别状况下可能看到正方形。(2)正方体:从上、下、前、后、左、右看,都会看到一个正方形。(3)圆柱: 从上或下看,会看到一个圆。 从侧面看,会看到一个长方形或正方形。 (4)圆锥: 从上面看,会看到: 从下面看,会看到: 从侧面看,会看到: 学问点四:立体图形的表面积和
26、体积 1、表面积的意义: 一个立体图形全部面的面积总和,叫做它的表面积。2、体积的意义: 一个立体图形所占空间的大小,叫做它的体积。2、 立体图形的表面积和体积的计算公式: 名称 图形 侧面积 表面积 体积 长方体 S=2(a+b)h S=(ab+ah+bh)2 V=abh 正方体 S=4a S=6 a V=a 圆柱 S=Ch =2rh S=Ch+2r V=Sh =rh 圆锥 V=Sh (二)图形与变换 学问点一:轴对称图形 轴对称图形的意义:假如一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形叫做轴对称图形。这条折痕所在的直线叫做对称轴。学问点二:平移和旋转 1、平移:物体或图形在
27、同一平面内沿直线移动,而本身没有发生方向上的变更,像这样的物体或图形所做的直线运动叫做平移。 平移的两个要素:一是移动的方向,二是移动的距离。 2、旋转:物体或图形以一个点或一个轴为中心进行圆周运动,像这样的物体或图形所做的运动叫做旋转。 旋转的三个要素:一是围绕的定点或轴,二是旋转方向(逆时针方向或顺时针方向),三是旋转角度。 利用图形的平移和旋转,可以设计出漂亮的图案。 学问点三:图形的扩大与缩小 图形根据肯定的比例扩大或缩小后,大小变更,形态不变。 学问点四:设计图案 (三)图形与位置 学问点一:分辨方向 学问点二:绘制示意图 在绘制某地点的示意图时,须要把实际距离按肯定比例缩小,再画在
28、图纸上,还要确定图上距离和相对应的实际距离的比。 图上距离:实际距离=比例尺 图上距离=实际距离比例尺 实际距离=图上距离比例尺 学问点三:确定物体的位置 1、依据行、列用数对表示物体的位置。 竖排叫做列,横排叫做行,确定第几列一般是从左往右数,确定第几行一般是从前往后(从下往上)数。数对:(列数,行数) 2、依据物体的方向和距离可以确定物体的位置。 第三部分 统计与可能性 学问点一:统计 1、统计表 统计表分为单式统计表和复式统计表。 2、统计图: 常用的统计图有条形统计图、折线统计图和扇形统计图三种。(1)条形统计图能清晰地看出各数量的多少。(2)折线统计图不但能看出数量的多少,还能清晰地
29、看出数量的增减改变的状况、趋势。(3)扇形统计图能清晰地看出各部分数量与总数之间的关系。(能清晰地看出各部分占总数的百分比,以及部分与部分之间的关系。) 3.统计的作用 (1)统计是分析问题和解决问题的有效工具 (2)用统计的方法可以对数据进行描述和分析。(3)依据数据分析的结果可以进行说明、推断和预料。学问点二:平均数 平均数是个常见的统计量。(4) 平均数:求平均数的实质就是将几个数量,在总量(和)不变的状况下,通过移多补少,使它们变为相等。总数量总份数=平均数。 学问点三:可能性 第四部分综合与实践 数学思想与方法 转化法: 在学习数学时,运用转化思想可以将未知问题转化为已知问题,从而充
30、分调动已有的数学学问阅历解决新问题;也可以将困难的问题转化成比较简洁的问题,使问题更加简单解决。转化是一种广泛适用的解决问题的方法。 计算时:小数乘法可以转化成整数乘法来计算。 小数除法可以转化成除数是整数的除法来计算。 异分母分数加法可以转化成 分数除法可以转化成 推导平面图形的面积计算公式:平行四边形 三角形 梯形 圆形 推导立体图形的体积计算公式:圆柱体 在解决问题时,有时也会遇到转化 求不规则物体的体积 数形结合法: 1、统计图是借助图形描述数据的一种直观、有效地形式 2、借助画图的方法可以帮助我们理解计算方法 3、借助线段图可以帮助我们直观地理解数量关系。 4、正比例图像也是用图形描述成正比例关系的两种量的直观形式。5、在平面内确定物体的位置时,也是把数与形结合起来思索。