《乙醛生产工艺技术.pdf》由会员分享,可在线阅读,更多相关《乙醛生产工艺技术.pdf(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、乙醛生产工艺技术 制备原理:通过控制乙醇的氧化可以获得乙醛。目前最重要的乙醛合成法是 Wacker 法。利用 PdCl2、CuCl2 作催化剂,使空气和乙烯与水反应生成乙醛。生产方法:瓦克法(Wacker process),又称 Hoechst-Wacker 法,最早是指乙烯在含有四氯钯酸盐催化剂的水中,被空气中的氧气氧化为乙醛的反应。123456 这是第一个工业化的有机金属(有机钯)反应,亦是均相催化和配位催化中很重要的一个反应,在 1960 年代后发展很快,在石油化工发达的国家已大幅取代了乙炔水合法,用于从烯烃制取醛、酮类。反应中的钯配合物与烯烃配合物蔡氏盐类似,不过后者是一个异相催化剂。
2、此反应形式上与氢甲酰化反应类似,都是工业上用于醛类的反应。但两者不同的是,氢甲酰化所用的是铑基催化剂,而且氢甲酰化是一个增碳过程。还有一种方法,就是在汞盐(如 HgSO4)的催化下,乙炔和水化合,生成乙醛。这种方法生产的乙醛纯度高,但操作人员容易发生汞中毒。现在科学家们正在研究用非汞催化剂,并已取得初步成效。2003 年的全球乙醛产量约 106 吨/年,6而主要的生产方法为 Wacker 过程,即通过氧化乙烯制备:2 CH2=CH2+O2 2 CH3CHO 除此法之外,还可以通过在汞盐的催化下水解乙炔形成烯醇异构化得到乙醛。在 Wacker 过程发明之前,该合成方法也作为主要的生产工艺7 乙醛
3、还可小规模的通过乙醇的脱氢反应和氧化反应进行制备。有些乙醛还可通过一氧化碳的氢化加成得到,但是该法无法用于商用生产。这一反应很容易发生,将乙烯和空气通入含有铜盐的氯化钯()-盐酸水中,乙烯几乎全部转化为乙醛。而氯化钯则被还原为钯,在氯化铜的作用下得到再生。氯化铜被还原生成的氯化亚铜又可被空气、纯氧或其他氧化剂再氧化为二价铜。这一过程形式上可以表示为:工艺流程:乙烯均相络合催化氧化制乙醛 以 PdCl2-CuCl2为催化剂在水溶液中对烯烃进行氧化,生成相应的醛或酮的方法称为瓦克(Wacker)法。这是一种液相氧化法,由于反应在液相中进行,使用的又是络合催化剂,故又称作均相络合催化氧化法。氧化最容
4、易在最缺氢的碳上进行,对乙烯而言,两个碳原子都具有两个氢,氧化时双键打开同时加氧,得到乙醛:丙烯最缺氢的是第二个碳原子,双键打开后就得到丙酮,而不是丙醛:同理,用1-丁烯或2-丁烯为原料均可得到甲乙酮:以此类推,由 1-戊烯可制得 n-甲丙酮,由 1-己烯可制得 n-甲丁酮,由 1-庚烯可制得 n-甲戊酮,由 1-辛烯可制得 n-甲己酮。但氧化速度随碳原子数的增多而减缓,例如,取乙烯反应速度为 1,则丙烯为 0.33,1-丁烯为0.25,2-丁二烯则为 0.1。这可能与分子的位阻效应有关。在瓦克法中,以乙烯制乙醛最为重要。用瓦克法制丙酮在技术经济方面难以与丙烯自氧化法和异丙醇法竞争,只有日本有
5、23 个工厂在进行生产,用此法丙酮的收率为 92 94%,副 产 w(正 丙 酸)=0.5%1.5%,w(氧化物)=2%4%,w(CO2)0.8%1.4%和 w(其他)0.5%1.5%等。用瓦克法由丁烯制甲乙酮则未见工业化报道。乙醛是重要的有机合成中间体,大量用来制造醋酸、醋酐和过醋酸,还用来制造乳酸、季戊四醇、1,3-丁二醇、丁烯醛、正丁醇、2-乙基己醇、三氯乙醛、三羟甲基丙烷等。用瓦克法生产乙醛的反应如下:烯烃氧化 Pd的氧化 第二个反应的反应速度比第一个低得多,上述的催化循环难以正常进行,为此可在第二个反应中添加铜盐作助催化剂,构成以下反应:工业上有将烯烃氧化和 Pd 的氧化合在一起的一
6、步法,有将它们分开在二个反应器中分别进行的二步法。反应原理可以描述如下:首先烯烃和水分子取代钯配位络合物中的氯阴离子并生成-络合物的中间物种:式(3)中的-络合物是弱酸,它会迅速解离 式(5)中的-络合物经内部电子重新排列,-络合物异构成-络合物。羟基离子攻击乙烯的一个不饱儿碳原子,同时氢离子向邻近碳原子迁移 +(6)由于-络合物的非均质分解(或异裂)而生成乙醛。Pd-Cl 键的异裂反应是不可逆的。零价钯络合物不稳定,很快分解放出金属钯 根据乙烯氧化机理,用氯化钯进行乙烯氧化的反应动力学方程如下:Cl离子含量对反应速度有重要影响,反应速度与氯离子浓度的平方成反比,因此,减少氯离子浓度可使反应速
7、度增加。但是发现,当氯离子不够时会生成铜的羟基氯化物Cu(OH)Cl,它对零价钯的氧化活性低,难以将零价 Pd氧化。因此,在催化剂盐溶液中PdCl2,CuCl2,Cu(OH)Cl,离子浓度应是Cld100 和 1ClCu2。图 3-1-45 纯氧和乙烯一步法生产乙醛的工艺流程图 一步法的工艺流程示于图 3-1-45。以纯氧为氧化剂,反应器操作温度约为 130,压力约为 0.3MPa。为安全计,气体混合物组成必需处在爆炸范围以外,因此氧约为(氧)=7%,而使用过量乙烯。乙烯的单程转化率为 30%40%,以保持 O2转化掉,w(乙烯)0.5。以 PdCl2-CuCl2水溶液为催化剂。采用鼓泡床塔式
8、反应器,反应后物料不论气体、液体和催化剂全部上升进入分离器,经分离器分离,将气体和反应液分开。气体经冷却塔冷却、水洗涤塔洗涤,回收绝大部分乙醛(尾气中乙醛含量小于 100ul l-1),大部分返回反应系统继续参与反应,少量排放至火炬烧掉。洗涤塔下部流出的粗乙醛进入粗乙醛贮槽。粗乙醛在轻组分蒸馏塔中分出低沸点物氯甲烷、氯乙烷及溶解的乙烯和 CO2等,最终蒸馏塔塔顶出纯度为 99.7%以上的精乙醛,侧线出丁烯醛等副产物。在反应中,有不溶性树脂和固体草酸铜留在反应液中,数量一多不仅污染催化液,而且使铜离子浓度下降,结果会影响催化剂活性。为此,操作中抽出少量在再生塔中再生,再生塔先通入氧和加入一定量盐
9、酸,使一价铜氧化成二价铜,然后升温至170,借助催化液中的Cu的氧化作用将草酸铜分解,放出 CO2并生成Cu。再生后的催化液送回反应器。该流程选择性为95%左右,催化剂生产能力约为150 kg 乙醛/(m3催化剂h)。二步法工艺流程见图 3-1-46。采用两台反应器,第一个反应器只通乙烯,不通空气,在100105,0.810.91MPa下操作,此时乙烯几乎全部参与反应,不需循环。经闪蒸塔进行气液分离后,图 3-1-46 空气和乙烯二步法生产乙醛的工艺流程图 气相进后续工序,进行精制,获得乙醛产品。液体进入第二个反应器(图上的氧化器),用空气氧化催化液,使 Cu成为 Cu2。与一步法一样,催化剂
10、也需再生,故流程中设有再生塔。氧化器反应温度100110,压力1.01.2MPa。该法乙烯单程收率 95%99%,产品乙醛收率 94.5%。二法各有优缺点,例如一步法对原料要求甚高,又要空分装置,但少一个反应器,系统中没有氮气,设备可做得小一些,流程短,操作压力也比二步法低。一般认为,选择何种生产方法与当地资源和工业条件有关。当地有纯乙烯和氧气可供利用,则采用一步法为好,若无此条件则采用二步法为宜,但需解决好副产氮气的利用问题,以便降低生产成本。因为系统中有 HCl、O2 和 CuCl2 存在,两种方法的防腐问题要引起高度重视,设备大多需用钛钢制造,输送催化液的泵也要选用钛泵。核心设备:乙烯氧
11、化制乙醛气使用液鼓泡反应器,它由反应器和除沫器组成,反应器上部有接管与除沫器连通,除沫器底部有回液管与反应器下部相通,反应器底部有循环气管伸入至反应器内部,反应器和除沫器内壁分别衬贴有耐酸的筒壁砖,在伸入反应器内的循环气管的外壁包裹一层聚四氟乙烯板。采用具有外循环管的鼓泡塔式反应器,以达到良好的传质,气液间有充分的 接触表面,催化剂溶液有充分的轴向混合以达到整个反应器内浓度均一,并除去 反应热的要求。除热方式为籍产物乙醛和水的蒸发以带走反应热,反应液是处于沸腾状态 的,反应温度是根据设定的压力而自然确定的,即溶液的泡点。如增大压力,要 保持反应液沸腾,反应温度必须提高,因此反应压力要控制。像这
12、种反应液处于沸腾状态,产物以气相形态出料的在鼓泡式反应器的反应 温度是根据反应压力来控制的。循环反应器,冷却塔,再生塔,分离器,洗涤塔,蒸馏塔,循环泵 附录资料:不需要的可以自行删除 常用电工与电子学图形符号 序号 符号 名称与说明 1 直流 注:电压可标注在符号右边,系统类型可标注在左边 2 直流 注:若上述符号可能引起混乱,也可采用本符号 3 交流 频率或频率范围以及电压的数值应标注在符号的右边,系统类型应标注在符号的左边 50Hz 示例 1:交流 50Hz 100600Hz 示例 2:交流 频率范围 100600Hz 380/220V 3N 50Hz 示例 3:交流,三相带中性线,50H
13、z,380V(中性线与相线之间为 220V)。3N 可用 3+N 代替 3N 50Hz/TN-S 示例 4:交流,三相,50Hz,具有一个直接接地点且中性线与保护导线全部分开的系统 4 低频(工频或亚音频)5 中频(音频)6 高频(超音频,载频或射频)7 交直流 8 具有交流分量的整流电流 注:当需要与稳定直流相区别时使用 9 N 中性(中性线)10 M 中间线 11+正极 12-负极 13 热效应 14 电磁效应 过电流保护的电磁操作 15 电磁执行器操作 16 热执行器操作(如热继电器、热过电流保护)17 M 电动机操作 18 正脉冲 19 负脉冲 20 交流脉冲 21 正阶跃函数 22
14、负阶跃函数 23 锯齿波 24 接地一般符号 25 无噪声接地(抗干扰接地)26 保护接地 27 接机壳或接底板 28 等电位 29 理想电流源 30 理想电压源 31 理想回转器 32 故障(用以表示假定故障位置)33 闪绕、击穿 34 永久磁铁 35 动触点 注:如滑动触点 36 测试点指示 示例点,导线上的测试 37 交换器一般符号/转换器一般符号 注:若变换方向不明显,可用箭头表示在符号轮廓上 38 电机一般符号,符号内的星号必须用下述字母代替 C 同步交流机 G 发电机 G8同步发电机 M 电动机 MG 拟作为发电机或电动机使用的电机 MS 同步电动机 注:可以加上符号或 SM 伺服
15、电机 TG 测速发电机 TM 力矩电动机 IS 感应同步器 39 M 3 三相笼式异步电动机 40 M 3 三相线绕转子异步电动机 41 C 3 并励三相同步变速机 42 TM M 直流力矩电动机 步进电机一般符号 43 G 电机示例:短分路复励直流发电机示出接线端子和电刷 44 M 串励直流电动机 45 M 并励直流电动机 46 M 1 单相笼式有分相扇子的异步电动机 47 M 1 单相交流串励电动机 48 M 1 单向同步电动机 49 MS 1 单向磁滞同步电动机 自整角机一般符号 符号内的星号必须用下列字母代替:CX 控制式自整角发送机 CT 控制式自整角变压器 TX 力矩式自整角发送机
16、 TR 力矩式自整角接收机 50 手动开关一般符号 51 按钮开关(不闭锁)52 拉拔开关(不闭锁)53 旋钮开关、旋转开关(闭锁)54 位置开关 动合触点 限制开关 动合触点 55 位置开关 动断触点 限制开关 动断触点 56 热敏自动开关 动断触点 57 热继电器 动断触点 58 接触器触点(在非动作位置断开)59 接触器触点(在非动作位置闭合)60 操作器件一般符号 注:具有几个绕组的操作器件,可由适当数值的斜线或重复本符号来表示 61 缓慢释放(缓放)继电器的线圈 62 缓慢吸合(缓吸)继电器的线圈 63 缓吸和缓放继电器的线圈 64 快速继电器(快吸和快放)的线圈 65 对交流不敏感
17、继电器的线圈 66 交流继电器的线圈 67 热继电器的驱动器件 68 熔断器一般符号 69 熔断器式开关 70 熔断器式隔离开关 71 熔断器式负荷开关 72 火花间隙 73 双火花间隙 74 动合(常开)触点 注:本符号也可以用作开关一般符号 75 动断(常闭)触点 76 先断后合的转换触点 77 中间断开的双向触点 78 先合后断的转换触点(桥接)79 当操作器件被吸合时延时闭合的动合触点 80 有弹性返回的动合触点 81 无弹性返回的动合触点 82 有弹性返回的动断触点 83 左边弹性返回,右边无弹性返回的中间断开的双向触点 84 指示仪表的一般符号 星号须用有关符号替代,如A 代表电流
18、表等 85 记录仪表一般符号 星号须用有关符号替代,如 W代表功率表等 86 V 指示仪表示例:电压表 87 A 电流表 88 A sin 无功电流表 89 var 无功功率表 90 cos 功率因数表 91 相位表 92 Hz 频率表 93 检流计 94 示波器 95 n 转速表 96 W 记录仪表示例:记录式功率表 97 W var 组合式记录功率表和无功功率表 98 记录式示波器 99 Wh 电度表(瓦特小时计)100 Wh 无功电度表 101 灯一般符号 信号灯一般符号 注:如果要求指示颜色则在靠近符号处标出下列字母:RD 红、YE 黄、GN 绿、BU 蓝、WH 白 如要指出灯的类型,
19、则在靠近符号处标出下列字母:Ne 氖、Xe 氦、Na 钠、Hg 汞、I 碘、IN 白炽、EL 电发光、ARC 弧光、FL 荧光、IR 红外线、UV 紫外线、LED 发光二极管 102 闪光型信号灯 103 电警笛 报警器 104 优选型 其它型 峰鸣器 105 电动器箱 106 电喇叭 107 优选型 其它型 电铃 108 可调压的单向自耦变压器 109 绕组间有屏蔽的双绕组单向变压器 110 在一个绕组上有中心点抽头的变压器 111 耦合可变的变压器 112 三相变压器 星形三角形联结 113 三相自耦变压器 星形连接 114 单向自耦变压器 115 双绕组变压器 注:瞬时电压的极性可以在形
20、式 Z 中表示 示例:示出瞬时电压极性标记的双绕组变压器 流入绕组标记端的瞬时电流产生辅助磁通 116 三绕组变压器 117 自耦变压器 118 电抗器 扼流圈 119 优选型 其它型 电阻器一般符号 120 可变电阻器 可调电阻器 121 U 压敏电阻器、变阻器 注:U 可以用 V 代替 122 滑线式变阻器 123 带滑动触点和断开位置的电阻器 124 滑动触点电位器 125 优选型 其它型 电容器一般符号 注:如果必须分辨同一电容器的电极时,弧形的极板表示:在圈定的纸介质和陶瓷介质电容器中表示外电极在可调和可变的电容器中表示动片电极在穿心电容器中表示纸电位电极 126 优选型 其它型 极
21、性电容器 127 优选型 其它型 可变电容器 可调电容器 128 优选型 其它型 微调电容器 129 电感器 线圈 绕组 扼流圈 130 半导体二极度管一般符号 131 发光二极管一般符号 132 Q 利用室温效应的二极管 Q 可用 t 代替 133 用作电容性器件的二极管(变容二极管)134 隧道二极管 135 单向击穿二极管 电压调整二极管 江崎二极管 136 双向击穿二极管 137 反向二极管(单隧道二极管)138 双向二极管 交流开关二极管 139 三极晶体闸流管 注:当没有必要规定控制极的类型时,这个符号用于表示反向阻断 三极晶体闸流管 140 反向阻断三极晶体闸流管 N 型控制极(
22、阳极侧受控)141 反向阻断三极晶体闸流管 P 型控制极(阴极侧受控)142 可关断三极晶体闸流管,末规定控制极 143 可关断三极晶体闸流管 N 型控制极 (阳极侧受控)144 可关断三极晶体闸流管 P型控制极 (阴极侧受控)145 反向阻断四极晶体闸流管 146 双向三极晶体闸流管 三端双向晶体闸流管 147 反向导通三极晶体闸流管,末规定控制极 148 反向导通三极晶体闸流管,N 型控制极(阳极侧受控)149 反向导通三极晶体闸流管,P 型控制极(阴极侧受控)150 光控晶体闸流管 151 PNP 型半导体管 152 NPN 型半导体管,集电极接管壳 153 NPN 型雪崩半导体管 15
23、4 具 P 型基极单结型半导体管 155 具有 N 型基极单结型半导体管 156 N 型沟道结型场效应半导体管 注:栅极与源极引线应绘在一直线上 157 P 型沟道结型场效应半导体管 158 增强型、单栅、P 沟道和衬底无引出线绝缘相场效应半导体管 159 增强型、单栅、N 沟道和衬底无引出线绝缘相场效应半导体管 160 增强型、单栅、P 沟道和衬底有引出线绝缘相场效应半导体管 161 增强型、单栅、N 沟道和衬底与源极在内部连接绝缘相场效应半导体管 162 耗尽型、单栅、N 沟道和衬底无引出线的栅场效应半导体管 163 耗尽型、单栅、P 沟道和衬底无引出线的栅场效应半导体管 164 耗尽型、
24、单栅、N 沟道和衬底有引出线的栅场效 注:在多栅的情况下,主栅极与源极的引线应在一条直线上 165 光敏电阻 具有对称导电性的光电器件 166 光电二极管 具有非对称导电性的光电器件 167 光电池 168 光电半导体管(示出 PNP 型)169 原电池或蓄电池 170 原电池组或蓄电池组 171 1 “或”单元,通用符号 只有一个或一个以上的输入呈现“1”状态,输出才呈现“1”状态 注:如果不会引起意义混淆,“1”可以用“1”代替 172&“与”单元,通用符号 只有所有输入呈现“1”状态,输出才呈现“1”状态 173 m 逻辑门槛单元,通用符号 只有呈现“1”状态输入的数目等于或大于限定符号
25、中用 m 表示的数值,输出才呈现“1”状态 注:m 总是小于输出端的数目 具有 m1 的单元就是上述“或”单元 174 =m 等于 m 单元,通用符号 只有呈现“1”状态输入的数目等于限定符号中以 m表示的数值,输出才呈现“1”状态 注:m 总是小于输出端的数目 m1 的 2 输入单元就是通常所说的“异或”单元 175 =/2 多数单元,通用符号 只有多数输入呈现“1”状态,输出才呈现“1”状态 176 逻辑恒等单元,通用符号 只有所有输入呈现相同的状态,输出才呈现“1”状态 177 2k+1 奇数单元(奇数校验单元)模 z 加单元,通用符号 只有呈现“1”状态的输入数目为(1、3、5 等),
26、输出才呈现“1”状态 178 2k 偶数单元,(偶数校验单元)通用符号 只有呈现“1”状态的输入数目为偶数(0、2、4 等),输出就呈现“1”状态 179 =1 异或单元,只有两个输入之一呈现“1”状态,输出才呈现“1”状态 180-1 输出无专门放大的缓冲单元 只有输入呈现“1”状态,输出才呈现“1”状态 181 1 非门 反相器(在用逻辑非符号表示器件的情况下)只有输入呈现外部“1”状态,输出才呈现外部“0”状态 182 1 反相器(在用逻辑极性符号表示器件的情况下),只有输入呈现 H 电平,输出才呈现 L 电平 183&1 2 I3 I2&3 输入与非门 例如:CTCT1010(国外对应
27、号 SN7410)的一部分 184 4 6 3 5 1 3 输入与非门 例如:CTCT1027(国外对应号 SN7427)的一部分 185 11&12 13 2 输入与非门(具有斯密特触发器)例如:CTCT1132(国外对应号 SN74132)的一部分 只有加到每一个输入的外部电平达到其门槛值 V1时,输出才呈现其内部“1”状态,输出维持其内部“1”状态,直到加在两输入端外部电平有一个达到它的门槛值 V2 为止 注:本符号不等效于 11&12 13 186 X/Y X/Y 编码器/代码转换器 通用符号 注:X 和 Y 可分别用表示输入和输出信号代码的适当符号代替 187 加法器,通用符号 18
28、8 X/Y P-Q 减法器,通用符号 189 乘法器,通用符号 190 CO 半加器 191 CI CO 一位全加器 注:简单的一位全加器可用奇数单元(模 2 加单元)和逻辑门槛单元另行描述。如下所示:CI 2 CO 2k+1 192 S R RS 触发器 RS 执行器 193 S R I=0 初始“0”状态的 RS双稳,在电源接通瞬间,输出处在其内部“0”状态 194 S R I=1 初始“1”状态的 RS 双稳 在电源接通瞬间,输出处在其内部“1”状态 195 S R NV 非易失的 RS 双稳 在电源接通瞬间,输出的内部逻辑状态与电源断开时的状态相同 196 单稳,可重复触发(在输出脉冲
29、期间)通用符号 单个发射 每次输入变到其“1”状态,输出就变到或维持其“1”状态,经过由特定器件的特性决定的时间间隔后,输出回到其“0”状态。从输入最后一次变到其“1”状态开始算起 197 单稳,非重复触发(在输出脉冲期间),通用符号 只有输入变到其“1”状态时,输出才变到其“1”状态。经过由特定器件的特性决定的时间间隔后,输出回到它的“0”状态,不管在此期间输入变量有什么变化 198 -+当 m=1 时,数字“1”可以省略。符号总是应保持在模拟输出端,在额定开路增益非常高而且不特别关心其具体数值的场合,推荐用符号作为放大系数,示例:高增益差分放大器(运算放大器)199 -+104-+额定放大
30、系数为 10000 并有两个互补输出的高增益放大器 200 +-1 放大系数为“1”的反相放大器 201 +2-3 具有两个输出的放大器,上面一个不反相,放大系数为“2”,下面一个反相,放大系数为“3”202 a G b 非稳态单元,通用符号。产生“0”和“1”交替序列的信号发生器 注:在此符号中,G 是发生器的限定符号,如波形明显时,此符号可不加符号 203 a G b&受控的非稳态单元,通用符号说明图 G 204 f m a1 ak W1 Wk m1 mk u1 uk 运算放大器一般符号 a1ak为输入信号 u1uk为输出信号 W1Wk代表加权系数有正负号的数值 m1mk代表放大系数有正负号的数值 除了那些实质上是数字的以外,放大系数的符号都应保持在每个输出上。当整个单元只有一个放大系数,或者从加权系数和放大系数提出公因子时,定性符号中的“m”可以用绝对值代替。