《高一数学课本下册知识点归纳.docx》由会员分享,可在线阅读,更多相关《高一数学课本下册知识点归纳.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一数学课本下册知识点归纳 数学是逻辑性很强的一门学科,学生想要学好数学,须要知道一些的学习方法以及学会总结数学课本学问点。下面就是我给大家带来的高一数学课本学问点,希望能帮助到大家! 高一数学课本学问点总结1 复数定义 我们把形如a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当虚部等于零时,这个复数可以视为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,也即任何复系数多项式在复数域中总有根。 复数表达式 虚数是与任何事物没有联系的,是肯定的,所以符合的表达式为: a=a+ia为实部,i为虚部 复数运算法则 加法法则:(
2、a+bi)+(c+di)=(a+c)+(b+d)i; 减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i; 乘法法则:(a+bi)(c+di)=(ac-bd)+(bc+ad)i; 除法法则:(a+bi)/(c+di)=(ac+bd)/(c2+d2)+(bc-ad)/(c2+d2)i. 例如:(a+bi)+(c+di)-(a+c)+(b+d)i=0,最终结果还是0,也就在数字中没有复数的存在。(a+bi)+(c+di)-(a+c)+(b+d)i=z是一个函数。 复数与几何 几何形式 复数z=a+bi被复平面上的点z(a,b)确定。这种形式使复数的问题可以借助图形来探讨。也可反过来用复
3、数的理论解决一些几何问题。 向量形式 复数z=a+bi用一个以原点O(0,0)为起点,点Z(a,b)为终点的向量OZ表示。这种形式使复数四则运算得到恰当的几何说明。 三角形式 复数z=a+bi化为三角形式 高一数学课本学问点总结2 对于a的取值为非零有理数,有必要分成几种状况来探讨各自的特性: 首先我们知道假如a=p/q,q和p都是整数,则x(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是R,假如q是偶数,函数的定义域是0,+)。当指数n是负整数时,设a=-k,则x=1/(xk),明显x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制来源于两点,一是有可能作为
4、分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道: 解除了为0与负数两种可能,即对于x>0,则a可以是随意实数; 解除了为0这种可能,即对于x<0和x>0的全部实数,q不能是偶数; 解除了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。 总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为随意实数,则函数的定义域为大于0的全部实数; 假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数
5、的定义域为不等于0的全部实数。 在x大于0时,函数的值域总是大于0的实数。 在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。 而只有a为正数,0才进入函数的值域。 由于x大于0是对a的随意取值都有意义的,因此下面给出幂函数在第一象限的各自状况. 可以看到: (1)全部的图形都通过(1,1)这点。 (2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。 (3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。 (4)当a小于0时,a越小,图形倾斜程度越大。 (5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。 (6)明显幂函数无界。
6、高一数学课本学问点总结3 函数图象学问归纳 (1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均满意函数关系y=f(x),反过来,以满意y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. (2)画法 A、描点法: B、图象变换法 常用变换方法有三种 1)平移变换 2)伸缩变换 3)对称变换 4.中学数学函数区间的概念 (1)函数区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 5.映射 一般地,设A、B是两个非空的函数,假如按某一个确定的
7、对应法则f,使对于函数A中的随意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)” 对于映射f:AB来说,则应满意: (1)函数A中的每一个元素,在函数B中都有象,并且象是的; (2)函数A中不同的元素,在函数B中对应的象可以是同一个; (3)不要求函数B中的每一个元素在函数A中都有原象。 6.中学数学函数之分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。 (2)各部分的自变量的取值状况. (3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 假如y=f(u)(u
8、M),u=g(x)(xA),则y=fg(x)=F(x)(xA)称为f、g的复合函数。 高一数学课本学问点总结4 集合的运算 1.交集的定义:一般地,由全部属于A且属于B的元素所组成的集合,叫做A,B的交集. 记作AB(读作”A交B”),即AB=x|xA,且xB. 2、并集的定义:一般地,由全部属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:AB(读作”A并B”),即AB=x|xA,或xB. 3、交集与并集的性质:AA=A,A=,AB=BA,AA=A, A=A,AB=BA. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即),由S中全部不属于A的元素组成的集合,
9、叫做S中子集A的补集(或余集) 记作:CSA即CSA=x|xS且xA (2)全集:假如集合S含有我们所要探讨的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:CU(CUA)=A(CUA)A=(CUA)A=U 高一数学课本学问点总结5 定义: x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。 范围: 倾斜角的取值范围是0<180。 理解: (1)留意“两个方向”:直线向上的方向、x轴的正方向; (2)规定当直线和x轴平行或重合时,它的倾斜角为0度。 意义: 直线的倾斜角,体现了直线对x轴正向的倾斜程
10、度; 在平面直角坐标系中,每一条直线都有一个确定的倾斜角; 倾斜角相同,未必表示同一条直线。 公式: k=tan k>0时(0,90) k<0时(90,180) k=0时=0 当=90时k不存在 ax+by+c=0(a0)倾斜角为A, 则tanA=-a/b, A=arctan(-a/b) 当a0时, 倾斜角为90度,即与X轴垂直 高一数学课本下册学问点归纳本文来源:网络收集与整理,如有侵权,请联系作者删除,谢谢!第9页 共9页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页第 9 页 共 9 页