《(精品)高一数学课本知识点.docx》由会员分享,可在线阅读,更多相关《(精品)高一数学课本知识点.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一数学课本知识点高一数学课本知识点在我们平凡的学生生涯里,大家都没少背知识点吧?知识点在教育实践中,是指对某一个知识的泛称。哪些知识点能够真正帮助到我们呢?下面是我为大家采集的高一数学课本知识点,仅供参考,希望能够帮助到大家。高一数学课本知识点1空间几何体外表积体积公式:1、圆柱体:外表积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:外表积:R2+R(h2+R2)的体积:R2h/3(r为圆锥体低圆半径,h为其高,3、a-边长,S=6a2,V=a34、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-h-高V=Sh6、棱锥S-h-高V
2、=Sh/37、S1和S2-上、下h-高V=hS1+S2+(S1S2)1/2/38、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C底面周长S底底面积,S侧,S表外表积C=2rS底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h10、空心圆柱R-外圆半径,r-内圆半径h-高V=h(R2-r2)11、r-底半径h-高V=r2h/312、r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/313、球r-半径d-直径V=4/3r3=d3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6=h2(
3、3r-h)/315、球台r1和r2-球台上、下底半径h-高V=h3(r12+r22)+h2/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=22Rr2=2Dd2/417、桶状体D-桶腹直径d-桶底直径h-桶高V=h(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=h(2D2+Dd+3d2/4)/15(母线是抛物线形)练习题:1.正四棱锥PABCD的侧棱长和底面边长都等于,有两个正四面体的棱长也都等于.当这两个正四面体各有一个面与正四棱锥的侧面PAD,侧面PBC完全重合时,得到一个新的多面体,该多面体是()(A)五面体(B)七面体(C)九面体(D)十一面体2.
4、正四面体的四个顶点都在一个球面上,且正四面体的高为4,则球的外表积为()(A)9(B)18(C)36(D)643.下列讲法正确的是()A.棱柱的侧面能够是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的外表都能展成平面图形D.棱柱的各条棱都相等高一数学课本知识点2圆的方程定义:圆的标准方程(x-a)2+(y-b)2=r2中,有三个参数a、b、r,即圆心坐标为(a,b),只要求出a、b、r,这时圆的方程就被确定,因而确定圆方程,须三个独立条件,其中圆心坐标是圆的定位条件,半径是圆的定形条件。直线和圆的位置关系:1.直线和圆位置关系的断定方法一是方程的观点,即把圆的方程和直线的方程联立成
5、方程组,利用判别式来讨论位置关系.0,直线和圆相交.=0,直线和圆相切.高一数学课本知识点3函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(xA)中的x为横坐标,函数值y为纵坐标的点P(x,y)的函数C,叫做函数y=f(x),(xA)的图象.C上每一点的坐标(x,y)均知足函数关系y=f(x),反过来,以知足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.高中数学函数区间的概念(1)函数区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间5.映射一般地,设A
6、、B是两个非空的函数,假如按某一个确定的对应法则f,使对于函数A中的任意一个元素x,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。记作“f(对应关系):A(原象)B(象)对于映射f:AB来讲,则应知足:(1)函数A中的每一个元素,在函数B中都有象,并且象是的;(2)函数A中不同的元素,在函数B中对应的象能够是同一个;(3)不要求函数B中的每一个元素在函数A中都有原象。6.高中数学函数之分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数假
7、如y=f(u)(uM),u=g(x)(xA),则y=fg(x)=F(x)(xA)称为f、g的复合函数。高一数学课本知识点4一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素.2、集合的中元素的三个特性:1.元素确实定性;2.元素的互异性;3.元素的无序性讲明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素.(2)任何一个给定的集合中,任何两个元素都是不同的对象,一样的对象归入一个集合时,仅算一个元素.(3)集合中的元素是平等的,没有先后顺序,因而断定两个集合能否一样,仅需比拟它们的元素能否一样,不需考察排列
8、顺序能否一样.(4)集合元素的三个特性使集合本身具有了确定性和整体性.3、集合的表示:如我校的篮球队员,太平洋,大西洋,印度洋,北冰洋1.用拉丁字母表示集合:A=我校的篮球队员,B=1,2,3,4,52.集合的表示方法:列举法与描绘法.注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N或N+整数集Z有理数集Q实数集R关于属于的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就讲a属于集合A记作aA,相反,a不属于集合A记作a?A列举法:把集合中的元素逐一列举出来,然后用一个大括号括上.描绘法:将集合中的元素的公共属性描绘出来,写在大括号内表示集合的方法.用确定的
9、条件表示某些对象能否属于这个集合的方法.语言描绘法:例:不是直角三角形的三角形数学式子描绘法:例:不等式x-32的解集是x?R|x-32或x|x-324、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:x|x2=-5二、集合间的基本关系1.包含关系子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合.反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.相等关系(55,且55,则5=5)实例:设A=x|x2-1=0B=-1,1元素一样结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素,同时,集合B
10、的任何一个元素都是集合A的元素,我们就讲集合A等于集合B,即:A=B任何一个集合是它本身的子集.AA真子集:假如AB,且A1B那就讲集合A是集合B的真子集,记作AB(或BA)假如AB,BC,那么AC假如AB同时BA那么A=B3.不含任何元素的集合叫做空集,记为规定:空集是任何集合的子集,空集是任何非空集合的真子集.三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作A交B),即AB=x|xA,且xB.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作A并B),即AB=x|xA,或x
11、B.3、交集与并集的性质:AA=A,A=,AB=BA,AA=A,A=A,AB=BA.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)(2)全集:假如集合S含有我们所要研究的各个集合的全部元素,这个集合就能够看作一个全集.通常用U来表示.(3)性质:CU(CUA)=A(CUA)(CUA)A=U高一数学课本知识点5I、定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,抛物线向上开口;当a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有2个交点。=b2-4ac=0时,抛物线与x轴有1个交点。=b2-4ac