时间序列分析的预处理.pptx

上传人:莉*** 文档编号:80063558 上传时间:2023-03-22 格式:PPTX 页数:61 大小:2.22MB
返回 下载 相关 举报
时间序列分析的预处理.pptx_第1页
第1页 / 共61页
时间序列分析的预处理.pptx_第2页
第2页 / 共61页
点击查看更多>>
资源描述

《时间序列分析的预处理.pptx》由会员分享,可在线阅读,更多相关《时间序列分析的预处理.pptx(61页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、获获得得观观察察值值序序列列平稳性平稳性检验检验差分差分运算运算YN纯随机纯随机检验检验Y分分析析结结束束N拟合拟合ARMA模型模型时间序列的预处理时间序列的预处理(续续)第1页/共61页1.平稳性定义平稳性定义知识回顾知识回顾若时间序列有有穷的二阶矩,且若时间序列有有穷的二阶矩,且 Xt 满足如下两个条满足如下两个条件:件:则称该时间序列为平稳序列。则称该时间序列为平稳序列。包括严平稳序列和宽平稳序列。包括严平稳序列和宽平稳序列。四、平稳性检验第2页/共61页在对实际的时间序列进行建模之前,应首先检验在对实际的时间序列进行建模之前,应首先检验序列是否平稳,若序列非平稳,应先通过适当变序列是否

2、平稳,若序列非平稳,应先通过适当变换将其化为平稳序列,然后再进行模型的建立。换将其化为平稳序列,然后再进行模型的建立。2.关于非平稳序列的处理关于非平稳序列的处理第3页/共61页序列的非平稳包括序列的非平稳包括均值非平稳均值非平稳和和方差非平方差非平 稳。稳。均值非平稳序列平稳化的方法:均值非平稳序列平稳化的方法:差分变换。差分变换。方差非平稳序列平稳化的方法:方差非平稳序列平稳化的方法:对数变换、平方根变换对数变换、平方根变换等。等。第4页/共61页3.平稳性检验方法平稳性检验方法非参数检验法非参数检验法特征根检验法特征根检验法单位根检验法单位根检验法(1)通过时间序列的趋势图来判断通过时间

3、序列的趋势图来判断(2)通过自相关函数通过自相关函数(ACF)判断判断图检验方法图检验方法第5页/共61页 非参数检验法:非参数检验法:游程检验游程检验一个游程定义为一个具有相同符号的连续串,在它前一个游程定义为一个具有相同符号的连续串,在它前后相接的是与其不同的符号或完全无符号。后相接的是与其不同的符号或完全无符号。例如,观察的结果用加、减标志表示,得到一组这样例如,观察的结果用加、减标志表示,得到一组这样的记录顺序:的记录顺序:+-+-+-+这个样本的观察结果共有这个样本的观察结果共有7个游程。个游程。(1)什么是游程什么是游程第6页/共61页(2)游程检验的基本思想游程检验的基本思想如果

4、符号序列是随机的,那么如果符号序列是随机的,那么“+”和和“-”将随机将随机出现,因此它的游程数既不会太多,又不会太少;出现,因此它的游程数既不会太多,又不会太少;反过来说如果符号序列的游程总数太少或太多,我反过来说如果符号序列的游程总数太少或太多,我们就可以认为时间序列存在某种趋势性或周期性们就可以认为时间序列存在某种趋势性或周期性。第7页/共61页第8页/共61页a.小样本情况小样本情况零假设零假设H0:加号和减号以随机的方式出现:加号和减号以随机的方式出现检验方法:取显著性水平检验方法:取显著性水平(一般取一般取0.05),查单样本游程检验查单样本游程检验表,得出抽样分布的临界值表,得出

5、抽样分布的临界值rL、rU判定判定:若:若rL r rU 或或r rL则拒绝零假设,序列是非平稳的。则拒绝零假设,序列是非平稳的。(3)检验方法检验方法第9页/共61页b.大样本情况大样本情况零假设零假设H0:加号和减号以随机的方式出现:加号和减号以随机的方式出现检验方法:给定显著性水平检验方法:给定显著性水平(一般取一般取0.05)查标准正态分布查标准正态分布表,得出抽样分布的临界值表,得出抽样分布的临界值-z,+z。并计算统计量。并计算统计量:判定:若判定:若-z z3时都落入置信区间时都落入置信区间,且逐渐趋于零,则该时间序列具有且逐渐趋于零,则该时间序列具有平稳性平稳性;若时间序列的自

6、相关函数更多地若时间序列的自相关函数更多地落在置信区间外面落在置信区间外面,则该时间序列就则该时间序列就不具有平稳性不具有平稳性。第19页/共61页l 若序列无趋势,但是具有季节性,若序列无趋势,但是具有季节性,那末对于按月那末对于按月采集的数据,时滞采集的数据,时滞12,24,36的自相关系数达的自相关系数达到到最大最大(如果数据是按季度采集,则最大自相关系数如果数据是按季度采集,则最大自相关系数出现在出现在4,8,12,),并且随着,并且随着时滞的增加变时滞的增加变得较小得较小。n若序列是有趋势的,且具有季节性若序列是有趋势的,且具有季节性,其自相关函数特,其自相关函数特性类似于有趋势序列

7、,但它们是摆动的,对于按月数性类似于有趋势序列,但它们是摆动的,对于按月数据,在时滞据,在时滞12,24,36,等处具有等处具有峰态峰态;如果时;如果时间序列数据是按季节的,则峰出现在时滞间序列数据是按季节的,则峰出现在时滞4,8,12,等处。等处。第20页/共61页 应用举例应用举例例例1 时序图时序图检验检验1951年年2005年我国居民住院消费价格指年我国居民住院消费价格指数数的平稳性的平稳性例例2 时序图时序图检验检验1990年年1月月1997年年12月我国药品总产值序列的平稳性月我国药品总产值序列的平稳性第21页/共61页例1 居民住院消费价格指数时序图平平稳稳序序列列第22页/共6

8、1页例例2 药品总产值时序图药品总产值时序图非非平平稳稳序序列列第23页/共61页(1)选择菜单GraphSequence。绘制序列图的基本操作绘制序列图的基本操作第24页/共61页(2)将需绘图的序列变量选入)将需绘图的序列变量选入Variables框中。框中。第25页/共61页(3)在)在Time Axis Labels框中指定横轴(时间轴)标志变量。框中指定横轴(时间轴)标志变量。该标该标志变量默认的是日期型变量。志变量默认的是日期型变量。(4)在)在Transform框中指定对变量进行怎样的变化处理。框中指定对变量进行怎样的变化处理。其中其中Natural log transform表

9、示对数据取自然对数,表示对数据取自然对数,Difference表示对表示对数据进行数据进行n阶(默认阶(默认1阶)差分,阶)差分,Seasonally difference表示对数据表示对数据进行季节差分。进行季节差分。第26页/共61页(5)单击)单击Time Lines 按钮定义序列图中需要特别标注的按钮定义序列图中需要特别标注的时间点时间点,给出了无标注(,给出了无标注(No reference Lines)、在某变)、在某变量变化时标注(量变化时标注(Line at each change of)、在某个日期)、在某个日期标注(标注(Line at date)三项供选择。)三项供选择。

10、第27页/共61页(6)单击)单击Format 按钮定义图形的格式,按钮定义图形的格式,可选择横向或纵可选择横向或纵向序列图;对于单变量序列图,可选择绘制线图或面积向序列图;对于单变量序列图,可选择绘制线图或面积图,还可选择在图中绘制序列的均值线;对多变量的序图,还可选择在图中绘制序列的均值线;对多变量的序列图,可选择将不同变量在同一时间点上的点用直线连列图,可选择将不同变量在同一时间点上的点用直线连接起来。接起来。第28页/共61页第29页/共61页通过自相关函数通过自相关函数(ACF)进一步判断进一步判断一个时间序列的一个时间序列的样本自相关函数样本自相关函数定义为:定义为:可可以以证证明

11、明:随随着着k的的增增加加,样样本本自自相相关关函函数数下下降降且且趋趋于零。于零。()()()=-=+-=nttkntkttXXXXXX121第30页/共61页序列的自相关函数序列的自相关函数(ACF)要么是要么是截尾的截尾的,要么是,要么是拖拖尾的尾的。因此我们可以根据这个特性来判断时间序列。因此我们可以根据这个特性来判断时间序列是否为平稳序列。是否为平稳序列。从下降速度来看,平稳序列要比非平稳序列快得多。从下降速度来看,平稳序列要比非平稳序列快得多。平稳序列的自相关系数常常表现出平稳序列的自相关系数常常表现出截尾截尾,而非平,而非平稳序列的自相关系数常常是稳序列的自相关系数常常是拖尾的拖

12、尾的。第31页/共61页 应用举例应用举例例例3 自相关图自相关图检验检验1951年年2005年我国居民住院消费价格指年我国居民住院消费价格指数数的平稳性的平稳性例例4 自相关图自相关图检验检验1990年年1月月1997年年12月我国药品总产值序列的平稳性月我国药品总产值序列的平稳性第32页/共61页例2 居民住院消费价格指数自相关图平平稳稳序序列列自自相相关关图图第33页/共61页例例3 药品总产值相关图药品总产值相关图非非平平稳稳序序列列自自相相关关图图第34页/共61页(1)选择菜单GraphTimeSeriesAutocorrelations。绘制自相关函数图的基本操作第35页/共61

13、页(2)将需绘制的序列变量选入)将需绘制的序列变量选入Variables框框第36页/共61页(3)在)在Display框选择绘制哪种图形,框选择绘制哪种图形,其中其中Autocorrelations表示绘制自相关函数图;表示绘制自相关函数图;Partial autocorrelations表示绘制偏自相表示绘制偏自相 关函数图。一般可同时绘制两种图形。关函数图。一般可同时绘制两种图形。第37页/共61页(4)单击)单击Options按钮定义相关参数,按钮定义相关参数,Maximum Number of Lags表表示相关函数值包含的最大滞后期示相关函数值包含的最大滞后期(时间间隔时间间隔h)

14、。一般选择两个最大周。一般选择两个最大周期以上的数据。在期以上的数据。在Standard Error Method框中指定计算相关系数框中指定计算相关系数标准差的方法,确定相关函数图形中的置信区间。其中标准差的方法,确定相关函数图形中的置信区间。其中Independence model表示假设序列是白噪声的过程;表示假设序列是白噪声的过程;Bartletts approximation表示用估计自相关系数和偏自相关系数方差的近似式表示用估计自相关系数和偏自相关系数方差的近似式计算方差。该方法适合序列是计算方差。该方法适合序列是k-1阶的移动平均过程,且标准差随阶阶的移动平均过程,且标准差随阶数

15、的增大而增大的情况。数的增大而增大的情况。第38页/共61页(5)选中)选中Display autocorrelation at periodic lags表示只表示只显示时间序列周期整数倍处的相关函数值。一般如果只考显示时间序列周期整数倍处的相关函数值。一般如果只考虑序列中的周期因素可选中该项。否则该步可略去。最后虑序列中的周期因素可选中该项。否则该步可略去。最后就就OK了。了。第39页/共61页五五 纯随机性检验纯随机性检验(一)纯随机序列的定义(一)纯随机序列的定义(二)纯随机性的性质(二)纯随机性的性质(三)纯随机性检验(三)纯随机性检验第40页/共61页(一)纯随机序列的定义(一)纯

16、随机序列的定义纯随机序列也称为纯随机序列也称为白噪声序列白噪声序列,它满足如下,它满足如下两条性质两条性质并不是所有平稳序列都值得建模!并不是所有平稳序列都值得建模!纯随机序列无法预测,无法进一步建模!纯随机序列无法预测,无法进一步建模!方差方差齐性齐性纯随纯随机性机性0第41页/共61页标准正态白噪声序列时序图 第42页/共61页(二)白噪声序列的性质(二)白噪声序列的性质 纯随机性纯随机性 各序列值之间没有任何相关关系,即为各序列值之间没有任何相关关系,即为“没有记忆没有记忆”的序列的序列 方差齐性方差齐性(平稳平稳)根据马尔可夫定理,只有方差齐性假定成立时,用最小二乘法得到的未根据马尔可

17、夫定理,只有方差齐性假定成立时,用最小二乘法得到的未知参数估计值才是准确的、有效的知参数估计值才是准确的、有效的第43页/共61页(三)纯随机性检验(三)纯随机性检验 1.检验原理检验原理2.假设条件假设条件3.检验统计量检验统计量 4.判别原则判别原则5.应用举例应用举例第44页/共61页1.检验原理检验原理:Barlett定理定理 如果一个时间序列是纯随机的,得到一个观察如果一个时间序列是纯随机的,得到一个观察期数为期数为 的观察序列,那么该序列的延迟非零期的观察序列,那么该序列的延迟非零期的样本自相关系数将近似服从的样本自相关系数将近似服从均值为零均值为零,方差方差为序列观察期数倒数为序

18、列观察期数倒数的的正态分布正态分布第45页/共61页Bartlett公式公式若若 在在 时趋于零,则在时趋于零,则在N足够大的足够大的情况下其方差为情况下其方差为并且,当并且,当 时,时,近似于正态分布近似于正态分布。46自相关自相关系数系数协方差函数协方差函数自相关函数自相关函数第46页/共61页2.假设条件假设条件原假设:原假设:延迟期数小于或等于延迟期数小于或等于 期的序列值期的序列值之间相互独立之间相互独立备择假设:备择假设:延迟期数小于或等于延迟期数小于或等于 期的序列期的序列值之间有相关性值之间有相关性 第47页/共61页3.检验统计量检验统计量Q统计量统计量(大样本)(大样本)L

19、B统计量统计量(小样本)(小样本)第48页/共61页4.判别原则判别原则拒绝原假设拒绝原假设当检验当检验统计量大于统计量大于 分位点分位点,或该统计量的,或该统计量的P值小于值小于 时时,则可以以,则可以以 的置信水平拒绝原假设,的置信水平拒绝原假设,则认为该序列为非白噪声序列则认为该序列为非白噪声序列接受原假设接受原假设当检验统计量当检验统计量小于小于 分位点,或该统计量的分位点,或该统计量的P值值大于大于 时,则认为在时,则认为在 的置信水平下无法拒绝原的置信水平下无法拒绝原假假设,即不能拒绝序列为纯随机序列的假定设,即不能拒绝序列为纯随机序列的假定 第49页/共61页若若 为白噪声的自相

20、关系数,则在为白噪声的自相关系数,则在M=0根据统计检验的根据统计检验的 准则,当准则,当时,便可认为时,便可认为 为为0的可能性是的可能性是95%,从而接受,从而接受 这一估计,即数据是独立的这一估计,即数据是独立的。50或或第50页/共61页5.应用举例应用举例例例3:标准正态白噪声序列纯随机性检验。:标准正态白噪声序列纯随机性检验。例例4 对对19491998年北京市流感发病率序列做白噪声检验。年北京市流感发病率序列做白噪声检验。例例5 对对1950年年1998年北京市城乡居民医疗保险占比例序列的平稳性与纯随年北京市城乡居民医疗保险占比例序列的平稳性与纯随机性进行检验。机性进行检验。第5

21、1页/共61页例例3:标准正态白噪声序列纯随机性检:标准正态白噪声序列纯随机性检验验样样本本自自相相关关图图第52页/共61页检验结果检验结果延迟Q统计量检验Q统计量值P值延迟6期4.34350.63延迟12期14.1710.29由于由于P值显著大于显著性水平值显著大于显著性水平 ,所以该序列不能拒绝,所以该序列不能拒绝纯随机的原假设。纯随机的原假设。第53页/共61页例例4 19491998年北京市流感发病率年北京市流感发病率序列的白噪声检验。序列的白噪声检验。样样本本自自相相关关图图第54页/共61页例例4 白噪声检验结果白噪声检验结果延迟阶数Q统计量检验Q检验统计量的值P值65.3840

22、.496126.17210.907由于由于P值显著大于显著性水平值显著大于显著性水平 ,所以不能拒绝序列纯随机的,所以不能拒绝序列纯随机的原假设。因而可以认为北京市流感发病的变动属于纯随机波动。原假设。因而可以认为北京市流感发病的变动属于纯随机波动。这说明我们很难根据历史信息预测未来年份的流感发病情况。这说明我们很难根据历史信息预测未来年份的流感发病情况。第55页/共61页例例5 时序图时序图第56页/共61页例例5 自相关图自相关图第57页/共61页例例5 白噪声检验结果白噪声检验结果延迟阶数Q统计量检验Q检验统计量的值P值665.1510.00011271.7730.0001由于由于P值显

23、著小于显著性水平值显著小于显著性水平 ,所以我们可以以很大的把,所以我们可以以很大的把握断定北京市城乡居民医保比例序列属于非白噪声序列。握断定北京市城乡居民医保比例序列属于非白噪声序列。第58页/共61页 结合前面的平稳性检验结果,说明该序列不仅可结合前面的平稳性检验结果,说明该序列不仅可以视为是平稳的,而且还蕴含着值得我们提取的以视为是平稳的,而且还蕴含着值得我们提取的相关信息。这种平稳非白噪声序列是目前最容易相关信息。这种平稳非白噪声序列是目前最容易分析的一种序列。分析的一种序列。第59页/共61页习题四 用上次的数据作时序图和自相关图,并根用上次的数据作时序图和自相关图,并根 据图形讨论序列是否具有平稳性和随机性?据图形讨论序列是否具有平稳性和随机性?第60页/共61页感谢您的观看!感谢您的观看!第61页/共61页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁