数字图像处理冈萨雷斯N08.pptx

上传人:莉*** 文档编号:80041982 上传时间:2023-03-22 格式:PPTX 页数:29 大小:3.69MB
返回 下载 相关 举报
数字图像处理冈萨雷斯N08.pptx_第1页
第1页 / 共29页
数字图像处理冈萨雷斯N08.pptx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《数字图像处理冈萨雷斯N08.pptx》由会员分享,可在线阅读,更多相关《数字图像处理冈萨雷斯N08.pptx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、Spatial FilteringBackgroundSmoothing FiltersSharpening FiltersSpatial Filtering no.1linear filter:Spatial filter,mask,template,window.nonlinear filter:Median,minimal,or maximal value of a neighborhood.第1页/共29页Background of Spatial FilteringSpatial Filtering no.2Odd sizeThe border?第2页/共29页Background

2、of Spatial Filtering(cont.)Linear filters:the transfer function and the point spread function of a linear system are inverse Fourier transforms of each other.a)s1s9 intensities of pixels.b)k1k9 mask coefficients.c).Spatial Filtering no.3Convolution mask第3页/共29页Smoothing Filters Smoothing filters are

3、 used for blurring and for noise reduction.Lowpass filtering(linear):all the coefficients be positive.Such as,sampled by a Gaussian functionNeighborhood averaging,weighted neighborhood averaging,scaled not to out of the valid gray-level range (for mn mask normalized by 1/(mn).Spatial Filtering no.4第

4、4页/共29页Examples of averaging Filtera)Original image,b)noise corrupted,c)e)results of smoothing template by size of 77,9 9,and 11 11.Spatial Filtering no.5第5页/共29页Examples of averaging FilterSpatial Filtering no.6Irrelevant details vs.Mask size第6页/共29页Example of averaging FilterSpatial Filtering no.7

5、Small objects blended with background,size of mask?第7页/共29页Median filter(nonlinear)The gray level of each pixel is replaced by the median of the gray levels in a neighborhood of that pixel,instead of averaging.To achieve noise reduction rather than blurring.The 5th value of a 33 window,Minimal or ma

6、ximal.Spatial Filtering no.8第8页/共29页Sharpening FiltersThe objective is to highlight fine detail in an image or to enhance detail that has been blurred.Basic high-pass spatial filteringHigh-boost filteringDerivative filtersLaplacian filtersPrinting,medical,inspection,target detection-1-1-1-1 8-1-1-1-

7、1A classic implementation of sharpening filter,Eliminates zero-frequency termIndicate positive near center,negative in the outer peripherySpatial Filtering no.9第9页/共29页Example of High-pass FilterReducing the average value of image to zero implies that image must have some negative gray levels.Thus i

8、nvolve some form of scaling/clipping so final result span the range 0,L-1Spatial Filtering no.10第10页/共29页High-boost Filtering A high-pass filtered image may be computed as,Highpass=Original LowpassThe definition of high-boost or High-frequency emphasis filter is High boost=(A)Original Lowpass =(A-1)

9、Original+OriginalLowpass =(A-1)Original+Highpass-1-1-1-1 w-1-1-1-1w=9A-1A=1 standard highpass resultA1 part of the original is added back to highpass result,restore low frequency component.Looks more like original with edge enhancement.Spatial Filtering no.11第11页/共29页Example of High-boost Filtera)or

10、iginal,b)Highpass,c)Highboost a=2,d)extend gray-level of(c)Spatial Filtering no.12第12页/共29页Derivative Filters(nonlinear)Averaging pixels over a region tends to blur detail in an image.As averaging is analogous to integration,differentiation can be expected to have the opposite effect and thus sharpe

11、n an image.The gradient of f at coordinate(x,y)is defined as the vector,The magnitude of this vector,Spatial Filtering no.13第13页/共29页Derivative Filter approximation Roberts cross-gradient operators10 0-101-10 Prewitt operators-1-1-10 00111-101-1 01-101z1z2z3z4 z5z6z7z8z9Spatial Filtering no.14第14页/共

12、29页Derivative Filter approximation(cont)Sobel operators-1-2-10 00121-101-2 02-101Spatial Filtering no.15第15页/共29页Example of Derivative FilterSpatial Filtering no.16第16页/共29页Laplacian Filters Laplacian operatorSpatial Filtering no.17第17页/共29页Example of DerivativesSpatial Filtering no.18第18页/共29页1D ed

13、ge detectionSpatial Filtering no.18第19页/共29页1D edge detectionSpatial Filtering no.18Double thin edge or?The zero-crossings of s(x)mark possible edges.第20页/共29页Laplacian enhancementSpatial Filtering no.19第21页/共29页Example of Laplacian FiltersSpatial Filtering no.20第22页/共29页High-boost maskSpatial Filte

14、ring no.21第23页/共29页Example of High-boost FilterSpatial Filtering no.22第24页/共29页Example of combined filteringSpatial Filtering no.23第25页/共29页Example of combined filtering(cont.)Spatial Filtering no.24第26页/共29页Review QuestionsnExplain the idea of smoothing filternExplain the idea of sharpening filternExplain the idea of media filter第27页/共29页Recommended Reading Gonzalez+Woods:Chapter 3 Image Enhancement no.37第28页/共29页感谢您的观看!第29页/共29页

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > PPT文档

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁