《2022年中考数学代数几何公式定理汇编大全.docx》由会员分享,可在线阅读,更多相关《2022年中考数学代数几何公式定理汇编大全.docx(46页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精选学习资料 - - - - - - - - - 中考数学代数公式、定理汇编 一 :第一章有理数及其运算 1 自然数及其运算11 自然数零的符号是“0” ,它表示没有数量或进位制上的空位“ 1” 是数个数的单位,称作自然数除 0 之外, 任何自然数都是由如干个“1” 组成的,的单位自然数的全体:0,1,2,3, 4, , n ,叫做自然数的集合,简称自然数集能被 2 整除的数叫做偶数 12 自然数的运算; 不能被 2 整除的数叫做奇数1 加法 : 求和的运算叫做加法 2 减法 : 减法是加法的逆运算3 乘法 : 同一个自然数的连加运算,就叫做乘法 4 除法 : 除法是乘法的逆运算,零不能做除数
2、 13 自然数的运算性质 用字母表示任一个自然数,来说明对于任何自然数的运算普遍成立的运算规律和运算特 征即它们的共同性质,并简称为运算通性或运算律 1 加法交换律 : a+b=b+a2 加法结合律 : a+b+c=a+b+c 3 乘法交换律 : a.b=b.a 4 乘法对加法的安排律 : a+b.c=a.c+b.c 5 加法结合律 :名师归纳总结 - - - - - - -第 1 页,共 29 页精选学习资料 - - - - - - - - - a.b.c=a.b.c 6 自然数 0 和 1 的运算特点 14 乘法运算及指数运算律求同一个数得连乘运算,叫做乘方运算an 中,a 叫做底数,自然
3、数n 叫做指数,乘方的结果an 叫做幂 读作“ a 的 n 次幂”或“ a 的 n 次方” 零的 n 次方总等于零,1 的 n 次方总等于1同底数幂相乘,底数不变,只是指数相加指数运算律 一 同底数幂相乘,指数相加,底数不变,即 am.an=am+n ,指数运算律 二乘积的幂,等于各因数的幂的乘积,即 a.bn=an.bn 指数运算律 三幂的乘方,指数相乘,底数不变,即 amn=amn 指数运算律 四同底数幂相除,指数相减,底数不变,即am/an=am-n 其中 mn, a.=0两个同底数 不为 0 、同指数的幂相除,其商等于 1a0=1 a.=0分数的意义与特点a/b.b=a.1/b.b=b
4、.1/b.a=1.a=aa/b=am/bm m.=0a/b=a/b/b/n n.=0分数有一个重要的基本性质:分数的值不变22 分数的运算及运算律加、减法一个分数的分子、 分母同时乘以或除以同一个不为零的数,名师归纳总结 - - - - - - -第 2 页,共 29 页精选学习资料 - - - - - - - - - a/b+ , -c/d=ad/bd+,-bc/bd=ad+,-bc/bd乘法 a/b.c/d=ac/bd 除法 a/b/c/d=a/b.d/c=ad/bc 乘方 a/bm=a/b.a/b a/bm 个括号 =am/bm 分数加法的交换律是 a/b+c/d=c/d+a/b 3 有
5、理数的意义 31 相反意义的量 在讨论两者的总成效时,可以相互抵消或一部分抵消 32 正数和负数、相反数 带有正号的数叫做正数 “ +” 号也可省略不写 ;带有负号的数叫做负数 负数与正数合并时,其结果可以相消或部分抵消 数零,既不是正数,也不是负数 对任一个数 a,总能有一个数 -a ,使它们可以相消,像这样只是符号不同的两个数,叫 做互为相反数 零的相反数,仍是零 33 有理数、数轴整数包括正整数、负数和零 分数包括正分数、负分数 整数和分数,统称为有理数 全体有理数组成的集合,称为有理数集合名师归纳总结 - - - - - - -第 3 页,共 29 页精选学习资料 - - - - -
6、- - - - 全体整数组成的集合,称为整数集合 全体自然数组成自然数集合 有理数可以用一条直线上的点来表示 规定了原点、正方向和单位程度的直线叫做数轴 对于任一个有理数,在数轴上都可以有一个确定的点表示它 正数和负数,可表示“ 相反意义” 的量,而数零是它们的界限 互为相反数的一对数, 在数轴上总是表示到原点距离相等的一对点零与它们的相反数都 用原点表示 34 肯定值 一个有理数在数轴上所对应的点至原点的距离叫做肯定值 一个正数的肯定值是它本身 ; 一个负数的肯定值是它的相反数 ; 零的肯定值是零 4 有理数的运算 41 有理数的加法与减法 加法 符号相同的两个有理数相加,只要将两数的肯定值
7、相加,符号仍取原先的符号两个符号相反的有理数相加,将较大的肯定值减去较小的肯定值,符号取肯定值较大的加数的符号 减法 减法是加法的逆运算 减法法就是减去一个数,等于加上这个有理数的相反数 在有理数范畴内,减法运算也是畅通无阻的 42 代数和 含有加减运算的式子,都能转化成井含有加法运算的式子,我们称它为“ 代数和”名师归纳总结 - - - - - - -第 4 页,共 29 页精选学习资料 - - - - - - - - - 去括号法就:去掉紧接正号后面的括号时,括号里的各项都不变 括号时,括号里的各项都要变号; 去掉紧接负号后面的添括号法就:紧接正号后面添加括号时,括号到括号里的各项都不变
8、; 紧接符号后面添加括号时,括到括号里的各项都要变号43 有理数的乘法与除法乘法异号 一负一正 两有理数相乘,将肯定值相乘,符号取负两个负有理数相乘,将肯定值相乘,符号取正乘法法就:将肯定值相乘,积的符号是:同号得正,异号得负当负乘数有奇数个时,成积为负; 当负乘数有偶数个时,成积为正;只要有一个乘数为零,那么乘积必定是零除法除法法就:将肯定值相除,商的符号是:同号相除得正,异号相除得负零除以任一个非零有理数,其商仍为零零不能作除数任一个非零有理数 x,除 1 所得的商 1/x ,叫做这个数 x 的倒数非零有理数 x 与 1/x 互为倒数,其特点性质是 x.1/x=1 零没有倒数除以一个非零有
9、理数,就等于诚心这个数的倒数 a/b=a.1/b=a/b 44 有理数的乘方非零有理数的乘方,将其肯定值乘方,而结果的符号是:正数的任何次乘方都取正号 ;负数的奇数乘方取负号,负号的偶次乘方取正号零的非零次都 0; 零的零次方没有意义45 有理数的混合运算先乘方,再乘除,后加减; 如有括号,就“ 先里后外” 去括号,逐步运算名师归纳总结 - - - - - - -第 5 页,共 29 页精选学习资料 - - - - - - - - - 46 近似数和有效数字 与实际相符的数,叫做精确数 与实际接近的数,叫近似数一般地, 一个近似数四舍五入到哪一位,就说这个近似数精确到哪一位这时,从左边第一个非
10、零数字起到精确到那一位数字止,全部的数字,都叫做这个数的有效数字 5 有理数的基本性质 51 有理数运算的“ 通性”1 加、减、乘 乘方 、除运算的封闭性任意两个有理数的和、差、积、商0 不作除数 都仍是有理数这就是有理数四就运算的封闭性相比之下,在自然数范畴内,除法 除数不为 0 、减法都不封闭; 在整数范畴内,除法 除数不为 0 也不封闭2 加法、乘法运算满意交换律、结合律和安排律 1 加法的交换律、结合律对于有理数 a、b、c 来说 a+b=b+a;a+b+c=a+b+c 2 乘法的交换律、结合律对于有理数 a、b、c 来说,a.b=b.a; a.b.c=a.b.c 3 乘法对于加法的安
11、排律 对于有理数 a、b、c 来说 a.b+c=a.b+a.c 3 加、减法运算,乘、除运算的统一 1 加、减运算的统一名师归纳总结 任意一个有理数a,总有它唯独的一个相反数-a ,使得 -a+a=a+-a=0因而,有理数第 6 页,共 29 页减法,就可以转化为加法,即a-b=a+-b - - - - - - -精选学习资料 - - - - - - - - - 2 乘、除运算的统一任意一非零有理数b,总有它唯独的一个倒数1/b ,使得 b.1/b=1/b.b=1因而,有理数除法,就可以转化为乘法,即a/b=a.1/bb.= 0 4 数 0 与 1 的特性 对于任意有理数 a 来说,a+0=0
12、+a=a; a.0=0.a=0; a.1=1.a=a 5 乘方运算满意指数运算律 52 有理数的大小次序 负数 零 0, ab; a-b=0, a=b; a-b” 或“B,那么 B 2 假如 AB,BC,那么 A 3 假如 AB,那么 A+,-mB+ ,-m 4 假如 AB,且 m0,那么 AmBm 5 假如 AB,且 m0,那么 Am=0,b=0 2 算术平方根的除法 sqrta/sqrtb=sqrta/b a=0, b0 通过分子、 分母同乘以一个式子把分母中的根号化去火把根号中的分母化去,叫做分母 有理化名师归纳总结 - - - - - - -第 12 页,共 29 页精选学习资料 -
13、- - - - - - - - 1 被开方数的每个因数的指数都小于2;2 被开方数不含有字母我们把符合这两个条件的平方根叫做最简平方根23 算术平方根的加、减运算方根假如几个平方根化成最简平方根以后,被开方数相同, 那么这几个平方根就叫做同类平3 一元二次方程及其解法 31 一元二次方程 只含有一个未知数,且未知数的最高次数是 2 的方程,叫做一元二次方程 32 特别的一元二次方程的解法 33 一般的一元二次方程的解法配方法 用配方法解一元二次方程的一般步骤是:1 化二次项系数为 1 用二次项系数去除方程两边,将方程化为 x2+px+q=0 的形式 2 移项把常数项移至方程右边,将方程化为 x
14、2+px=-q 的形式 3 配方方程两边同时加上“ 一次项系数一半的平方” ,是方程左边成为含有未知数的完全平方形式,右边是一个常数 4 有平方根的定义,可知1 当 p2/4-q0 时,原方程有两个实数根 ; 2 当 p2/4-q=0 ,原方程有两个相等的实数根 二重根 ; 3 当 p2/4-q=0 时, x1,2=-b+ ,-sqrtb2-4ac/2a 35 一元二次方程根的判别式 方程 ax2+bx+c=0a.=0 名师归纳总结 当 delta=b2-4ac0时,有两个不相等的实数根; 第 13 页,共 29 页- - - - - - -精选学习资料 - - - - - - - - - 当
15、 delta=b2-4ac=0时,有两个相等的实数根; 当 delta=b2-4ac0 时,它的图像经过第一,三象限,y 随着 x 的值增大而增大 ; 当 k0 时,他的图像的两个分支分别位于第一,三象限内,在每一个象限内,y 随x 的值增大而减小 ; 当 k0 时,它的图像的两个分支分别位于其次、四象限内,在每一个象限内, y 随 x 的增大而增大8 它的图像的两个分支都无限接近但永久不能达到 x 轴和 y 轴5 一次函数及其图像51 一次函数及其图像假如 k=0 时,函数变形为y=b,无论 x 在其定义域内取何值,y 都有唯独确定的值b 与之对应,这样的函数我们称它为常函数直线 y=kx+
16、b 与 y 轴交与点 0 ,b ,b 叫做直线 y=kx+b 在 y 轴上的截距,简称纵截距52 一次函数的性质函数 y=f 小 ,在 axb 上,假如函数值随着自变量 函数 fx 在 ax x 的值增加而增加,那么我们说名师归纳总结 - - - - - - -第 20 页,共 29 页精选学习资料 - - - - - - - - - 假如分别画出两个二元一次方程所对应的一次函数图像,解,这种求二元一次方程组的解法叫图像法3. 3 一次函数的应用交点的坐标就是这个方程组的2022 年中考数学代数公式、定理汇编 九 :第九章二次函数1 二次函数及其图像11 二次函数我们把函数y=ax2+bx+c
17、a, b,c 为常数,且a 不等于 0 叫做二次函数12 函数 y=ax2a 不等于 0 的图像和性质用表里各组对应值作为点的坐标,进行描点,然后用光滑的曲线把它们顺次联结起来,就得到函数 y=x2的图象这个图象叫做抛物线函数 y=x2的图像, 以后简称为抛物线 y=x2这条抛物线是关于 y 轴成对称的我们把 y 轴叫做抛物线 y=x2的对称轴对称轴和抛物线的焦点,叫做抛物线的顶点13 函数 y=ax2+bx+ca 不等于 0 的图像和性质抛物线 y=ax2+bx+c 的顶点坐标是 -b/2a,4ac- b2/4a ,对称轴方程是x=-b/2a ,当 a0 时,抛物线的开口向上,并且向上无限延
18、长 限延长; 当 a 0 时,抛物线的开口向下,并且向下无当 a0 时,二次函数 y=ax2+bx+c 在 x-b/2a 时是递减的,在 x-b/2a 时是递增的 ;在 x=-b/2a 处取得 y 最小 =4ac- b2/4a 当 a0 时,二次函数 y=ax2+bx+c 在 x-b/2a 时是递减的 ; 在 x=- 不/2a 处取得 y 最大 =4ac- b2/4a2 依据已知条件求二次函数21 依据已知条件确定二次函数22 二次函数的最大值或最小值23 一元二次方程的图像解法名师归纳总结 - - - - - - -第 21 页,共 29 页精选学习资料 - - - - - - - - -
19、2022 年中考数学几何公式、定理汇编 一 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的全部线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 假如两条直线都和第三条直线平行,这两条直线也相互平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个