《数学:《矩阵与变换》课件2(新人教A选修4-2).ppt》由会员分享,可在线阅读,更多相关《数学:《矩阵与变换》课件2(新人教A选修4-2).ppt(77页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、选修选修4-2“矩阵与变换矩阵与变换”教材解析教材解析江苏省海安高级中学江苏省海安高级中学 冯冯 俊俊1l内容解析内容解析l教学建议教学建议2l内容解析内容解析3 通过几何变换讨论二阶矩阵的乘法及性质、逆矩通过几何变换讨论二阶矩阵的乘法及性质、逆矩通过几何变换讨论二阶矩阵的乘法及性质、逆矩通过几何变换讨论二阶矩阵的乘法及性质、逆矩阵和矩阵的特征向量,并以变换和映射的观点理解解阵和矩阵的特征向量,并以变换和映射的观点理解解阵和矩阵的特征向量,并以变换和映射的观点理解解阵和矩阵的特征向量,并以变换和映射的观点理解解线性方程组的意义,初步展示矩阵应用的广泛性。线性方程组的意义,初步展示矩阵应用的广泛
2、性。线性方程组的意义,初步展示矩阵应用的广泛性。线性方程组的意义,初步展示矩阵应用的广泛性。主要内容主要内容42.1 二阶矩阵与平面向量二阶矩阵与平面向量2.2 几种常见的平面变换几种常见的平面变换2.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法2.4 逆矩阵与逆变换逆矩阵与逆变换2.5 特征值与特征向量特征值与特征向量2.6 矩阵的简单应用矩阵的简单应用 学习总结报告学习总结报告具体内容具体内容5 定位定位 低起点低起点以初中数学知识为基础;以初中数学知识为基础;低维度低维度以二阶矩阵为研究对象;以二阶矩阵为研究对象;形形数数以以(几何图形几何图形)变换研究二阶矩阵。变换研究二阶矩阵。意
3、图意图 在在基基本本思思想想上上对对矩矩阵阵、变变换换等等有有一一个个初初步步了了解,对进一步学习和工作打下基础。解,对进一步学习和工作打下基础。本专题的定位和意图本专题的定位和意图6 主要数学思想主要数学思想(1 1)数学化思想;)数学化思想;(2 2)数学建模;)数学建模;(3 3)数形结合的思想;()数形结合的思想;(4 4)算法思想。)算法思想。重点重点 通通过过几几何何图图形形变变换换,学学习习二二阶阶矩矩阵阵的的基基本本概概念、性质和思想。念、性质和思想。难点难点 切切变变变变换换,逆逆变变换换(矩矩阵阵),特特征征值值与与特特征征向向量。量。本专题重点本专题重点、难点及主要数学思
4、想难点及主要数学思想7 主线主线 通通过过几几何何变变换换对对几几何何图图形形的的作作用用,直直观观认认识识矩矩阵的意义和作用。阵的意义和作用。技术与内容的整合技术与内容的整合 (1)几何变换;)几何变换;(2)变换与矩阵的乘法;)变换与矩阵的乘法;(3)逆矩阵。)逆矩阵。几何画板、几何画板、Excel 教学要点教学要点 从从具具体体实实例例入入手手,突突出出矩矩阵阵的的几几何何意意义义,遵遵循循从具体到一般,从直观到抽象的教学原则。从具体到一般,从直观到抽象的教学原则。本专题的教学思路本专题的教学思路82.1 二阶矩阵与平面向量二阶矩阵与平面向量2.2 几种常见的平面变换几种常见的平面变换2
5、.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法2.4 逆矩阵与逆变换逆矩阵与逆变换2.5 特征值与特征向量特征值与特征向量2.6 矩阵的简单应用矩阵的简单应用具体内容解析具体内容解析92.1 二阶矩阵与平面向量二阶矩阵与平面向量建议课时建议课时:2课时课时教育目标教育目标:1.了解矩阵产生背景了解矩阵产生背景,并会用矩阵形式表示一些实际问题并会用矩阵形式表示一些实际问题.2.了解矩阵的相关知识了解矩阵的相关知识.3.掌握二阶矩阵与平面列向量的乘法规则掌握二阶矩阵与平面列向量的乘法规则.4.理解矩阵对应着向量集合到向量集合的映射理解矩阵对应着向量集合到向量集合的映射.102.1 二阶矩阵与平
6、面向量二阶矩阵与平面向量2.在本章中点和向量不加区分在本章中点和向量不加区分.如如:1.1.本专题研究的矩阵是二阶矩阵本专题研究的矩阵是二阶矩阵,对高阶矩阵只是要对高阶矩阵只是要求学生初步了解求学生初步了解.二阶矩阵如二阶矩阵如:两行两列两行两列112.1 二阶矩阵与平面向量二阶矩阵与平面向量3.3.矩阵的概念矩阵的概念从表、网络图、坐标平面上的点(向从表、网络图、坐标平面上的点(向量)、生活实例等引出量)、生活实例等引出.即在大量举例的基础上引出矩即在大量举例的基础上引出矩阵的概念和表示方法阵的概念和表示方法.如如:某公司负责从两个矿区向三个城市送煤:某公司负责从两个矿区向三个城市送煤:从甲
7、矿区向城市从甲矿区向城市A,B,CA,B,C送煤的量分别是送煤的量分别是200200万吨、万吨、240240万吨、万吨、160160万吨;万吨;从乙矿区向城市从乙矿区向城市A,B,CA,B,C送煤的量分别是送煤的量分别是400400万吨、万吨、360360万吨、万吨、820820万吨。万吨。122.1 二阶矩阵与平面向量二阶矩阵与平面向量4.4.矩阵通常用大写黑体字母表示矩阵通常用大写黑体字母表示.如如;矩阵矩阵A A,行矩阵和列行矩阵和列矩阵通常用希腊字母矩阵通常用希腊字母、等表示等表示.5.5.两个矩阵的行数与列数分别相等两个矩阵的行数与列数分别相等,并且对应位置的元并且对应位置的元素也分
8、别相等时两矩阵相等素也分别相等时两矩阵相等.6.6.二阶矩阵与列向量的乘法法则为二阶矩阵与列向量的乘法法则为:132.1 二阶矩阵与平面向量二阶矩阵与平面向量7.7.强化学生对二阶矩阵与强化学生对二阶矩阵与平面列向量平面列向量乘法的几何意义乘法的几何意义理解理解.使他们认识并理解矩阵是向量集合到向量集合使他们认识并理解矩阵是向量集合到向量集合的的映射映射,为后面学习几种常见的几何变换打下基础为后面学习几种常见的几何变换打下基础.表示的几何变换为表示的几何变换为:纵坐标不变纵坐标不变,横坐标变为原来的横坐标变为原来的2倍倍.8.8.二元一次方程组二元一次方程组 可以表示为可以表示为系数矩阵系数矩
9、阵142.1 二阶矩阵与平面向量二阶矩阵与平面向量2.2 几种常见的平面变换几种常见的平面变换2.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法2.4 逆矩阵与逆变换逆矩阵与逆变换2.5 特征值与特征向量特征值与特征向量2.6 矩阵的简单应用矩阵的简单应用具体内容解析具体内容解析152.2 几种常见的平面变换几种常见的平面变换建议课时建议课时:6课时课时教育目标教育目标:1.理解可以用矩阵表示平面中常见的几何变换理解可以用矩阵表示平面中常见的几何变换.2.掌握恒等掌握恒等 伸压伸压 反射反射 旋转旋转 投影投影 切变变换的矩阵表切变变换的矩阵表示及其几何意义示及其几何意义.3.从几何上理解二
10、阶矩阵对应的几何变换是线性变换从几何上理解二阶矩阵对应的几何变换是线性变换,并证明二阶矩阵对应的变换往往将直线变成直线并证明二阶矩阵对应的变换往往将直线变成直线.162.2 几种常见的平面变换几种常见的平面变换1.1.恒等变换矩阵恒等变换矩阵(单位矩阵单位矩阵)为为E E:2.2.恒等变换恒等变换是指对平面上任何一点是指对平面上任何一点(向量向量)或图形施以或图形施以矩阵矩阵 对应的变换对应的变换,都把自己变为自己都把自己变为自己.172.2 几种常见的平面变换几种常见的平面变换3.3.伸压变换伸压变换矩阵是指将图形作沿矩阵是指将图形作沿x x轴方向伸长或压缩轴方向伸长或压缩,或沿或沿y y轴
11、方向伸长或压缩的变换矩阵轴方向伸长或压缩的变换矩阵.伸压变换不是简单地把平面上的点伸压变换不是简单地把平面上的点(向量向量)“向下向下”压压,而是向而是向x x轴或轴或y y轴方向压缩轴方向压缩.182.2 几种常见的平面变换几种常见的平面变换4.4.反射变换反射变换矩阵是指将平面图形变为关于定直线或定矩阵是指将平面图形变为关于定直线或定点对称的平面图形的变换矩阵点对称的平面图形的变换矩阵.192.2 几种常见的平面变换几种常见的平面变换5.5.一般地一般地,二阶非零矩阵对应的变换把直线变成直线二阶非零矩阵对应的变换把直线变成直线.这种把直线变为直线的变换叫做线性变换这种把直线变为直线的变换叫
12、做线性变换.或点或点202.2 几种常见的平面变换几种常见的平面变换6.6.旋转变换旋转变换矩阵是指将平面图形围绕原点逆时针旋转矩阵是指将平面图形围绕原点逆时针旋转的变换矩阵的变换矩阵.其中其中称为旋转角称为旋转角,点点O为旋转中心为旋转中心.212.2 几种常见的平面变换几种常见的平面变换222.2 几种常见的平面变换几种常见的平面变换7.7.投影变换投影变换矩阵是指将平面图形投影到某条直线矩阵是指将平面图形投影到某条直线(或或某个点某个点)上的矩阵上的矩阵,相应的变换为投影变换相应的变换为投影变换.7.7.投影变换投影变换矩阵是映射矩阵是映射,但不是一一映射但不是一一映射.232.2 几种
13、常见的平面变换几种常见的平面变换8.8.切变变换切变变换矩阵是指类似于对纸牌实施的变换矩阵矩阵是指类似于对纸牌实施的变换矩阵.242.2 几种常见的平面变换几种常见的平面变换9.9.切变变换切变变换矩阵矩阵 把平面上的点把平面上的点P(x,y)沿沿x轴方轴方向平移向平移 个单位个单位.10.10.研究平面上的多边形或直线在矩阵的变换作用后研究平面上的多边形或直线在矩阵的变换作用后形成的图形时形成的图形时,只需考察顶只需考察顶(端端)点的变化结果即可点的变化结果即可.2526旋转矩阵旋转矩阵27282.1 二阶矩阵与平面向量二阶矩阵与平面向量2.2 几种常见的平面变换几种常见的平面变换2.3 变
14、换的复合与矩阵的乘法变换的复合与矩阵的乘法2.4 逆矩阵与逆变换逆矩阵与逆变换2.5 特征值与特征向量特征值与特征向量2.6 矩阵的简单应用矩阵的简单应用具体内容解析具体内容解析292.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法建议课时建议课时:2课时课时教育目标教育目标:1.熟练掌握二阶矩阵与二阶矩阵的乘法熟练掌握二阶矩阵与二阶矩阵的乘法.2.理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵理解两个二阶矩阵相乘的结果仍然是一个二阶矩阵,从几何变换角度看从几何变换角度看,它表示的原来两个矩阵对应的连续它表示的原来两个矩阵对应的连续两次变换两次变换.3.通过几何变换通过几何变换,使学生理解一般
15、情况下使学生理解一般情况下,矩阵乘法不满矩阵乘法不满足交换率足交换率.4.会验证矩阵乘法满足结合率会验证矩阵乘法满足结合率.5.从几何变换的角度了解矩阵乘法不满足消去率从几何变换的角度了解矩阵乘法不满足消去率.302.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法1.1.矩阵乘法的法则是矩阵乘法的法则是:2.2.矩阵乘法矩阵乘法MN的几何意义为对向量连续实施的两次的几何意义为对向量连续实施的两次几何变换几何变换(先先T TN N,后后T TM M)的复合变换的复合变换.3.3.矩阵乘法矩阵乘法不满足交换率不满足交换率,这可能是学生第一次遇到这可能是学生第一次遇到乘法不满足交换率的情况乘法不满
16、足交换率的情况.此时此时,我们可以从几何变换我们可以从几何变换角度进一步明确乘法一般不满足交换率角度进一步明确乘法一般不满足交换率,在适当时候在适当时候,有些特殊几何变换有些特殊几何变换(如两次连续旋转变换如两次连续旋转变换)满足交换率满足交换率.313233342.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法4.4.要求学生从几何变换角度理解要求学生从几何变换角度理解AB.AB.5.5.要求学生从几何变换角度理解矩阵乘法不满足销去要求学生从几何变换角度理解矩阵乘法不满足销去率率.3536372.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法6.6.有关转移矩阵有关转移矩阵.假设某市的天
17、气分为晴和阴两种状态假设某市的天气分为晴和阴两种状态,若今天晴若今天晴,则明则明天晴的概率为天晴的概率为 ,阴的概率为阴的概率为 ,若今天阴则明天晴的若今天阴则明天晴的概率为概率为 ,阴的概率为阴的概率为 ,这些概率可以通过观察某市这些概率可以通过观察某市以往几年每天天气的变化趋势来确定以往几年每天天气的变化趋势来确定,通常将用矩阵通常将用矩阵来表示的这种概率叫做转移矩阵概率来表示的这种概率叫做转移矩阵概率,对应的矩阵为对应的矩阵为转移矩阵转移矩阵,而将这种以当前状态来预测下一时段不同而将这种以当前状态来预测下一时段不同状态的概率模型叫做状态的概率模型叫做马尔可夫链马尔可夫链,如果清晨天气预报
18、如果清晨天气预报报告今天阴的概率为报告今天阴的概率为 ,那么明天的天气预报会是什那么明天的天气预报会是什么么?后天呢后天呢?382.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法392.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法402.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法7.7.转移矩阵每列的元素的和应该为转移矩阵每列的元素的和应该为1,1,否则做乘法时否则做乘法时,容易出问题容易出问题.412.1 二阶矩阵与平面向量二阶矩阵与平面向量2.2 几种常见的平面变换几种常见的平面变换2.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法2.4 逆矩阵与逆变换逆矩阵与逆变换2.5
19、特征值与特征向量特征值与特征向量2.6 矩阵的简单应用矩阵的简单应用具体内容解析具体内容解析422.4 逆变换与逆矩阵逆变换与逆矩阵建议课时建议课时:2课时课时教育目标教育目标:1.通过具体的图形变换通过具体的图形变换,理解逆矩阵的意义并掌握二阶矩理解逆矩阵的意义并掌握二阶矩阵存在逆矩阵的条件阵存在逆矩阵的条件,通过具体的投影变换通过具体的投影变换,说明它所对说明它所对应矩阵的逆矩阵不存在应矩阵的逆矩阵不存在.2.会证明逆矩阵的惟一性和会证明逆矩阵的惟一性和(AB)-1=B-1A-1等简单性质等简单性质.3.会从几何变换的角度求出会从几何变换的角度求出AB的逆矩阵的逆矩阵.4.会用逆矩阵的知识
20、解释二阶矩阵的乘法何时满足消去会用逆矩阵的知识解释二阶矩阵的乘法何时满足消去率率.5.了解二阶行列式的定义了解二阶行列式的定义,会用二阶行列式求逆矩阵和解会用二阶行列式求逆矩阵和解方程组方程组.432.4 逆变换与逆矩阵逆变换与逆矩阵教育目标教育目标:6.能用变换与映射的观点认识解线性方程组解的含义能用变换与映射的观点认识解线性方程组解的含义.7.会用系数矩阵的逆矩阵求解方程组会用系数矩阵的逆矩阵求解方程组.8.会通过具体的系数矩阵会通过具体的系数矩阵,从几何上说明线性方程组解的从几何上说明线性方程组解的存在性和惟一性存在性和惟一性.442.4 逆变换与逆矩阵逆变换与逆矩阵2 2课文从课文从“
21、走过去走过去”、“走回来走回来”的生动形象的话语中的生动形象的话语中引入了逆矩阵和逆变换这样安排让学生在轻松氛围中掌引入了逆矩阵和逆变换这样安排让学生在轻松氛围中掌握握“找到回家的路找到回家的路”的本质是的本质是已知矩阵已知矩阵A A,能否找到一个,能否找到一个矩阵矩阵B B,使得连续进行的两次变换的结果与恒等变换的结,使得连续进行的两次变换的结果与恒等变换的结果相同果相同也便于学生更好的理解逆矩阵,从而为例也便于学生更好的理解逆矩阵,从而为例1 1的顺的顺利解决打下基础利解决打下基础3 3例例1 1的设计起着承上启下的作用,所举的几个例子也是的设计起着承上启下的作用,所举的几个例子也是学生熟
22、知的,学生可以从几何变换的角度借助直观找到答学生熟知的,学生可以从几何变换的角度借助直观找到答案所以,例案所以,例1 1的目的在于帮助学生从几何的角度理解逆的目的在于帮助学生从几何的角度理解逆矩阵的意义,并为后续学习积累丰富的感性认识矩阵的意义,并为后续学习积累丰富的感性认识1.1.对于二阶矩阵对于二阶矩阵A,B,A,B,若有若有AB=BA=EAB=BA=E,则称则称A A是可逆的是可逆的,B,B称为称为A A的逆矩阵的逆矩阵.452.4 逆变换与逆矩阵逆变换与逆矩阵4 4既然有些矩阵存在逆矩阵,那么,什么样的矩阵存在既然有些矩阵存在逆矩阵,那么,什么样的矩阵存在逆矩阵呢?课本从映射角度给出解
23、释,让抽象的问题更逆矩阵呢?课本从映射角度给出解释,让抽象的问题更贴近学生实际贴近学生实际5 5矩阵矩阵 的行列式为的行列式为 ,则如果则如果 则矩阵则矩阵 存在逆矩阵存在逆矩阵.6.矩矩阵阵是否可逆的判断是否可逆的判断 462.4 逆变换与逆矩阵逆变换与逆矩阵7.逆矩逆矩阵阵的求解的求解 8.矩矩阵阵的逆矩的逆矩阵为阵为 472.4 逆变换与逆矩阵逆变换与逆矩阵9.“先穿袜子后穿鞋先穿袜子后穿鞋”“先脱鞋子后脱袜子先脱鞋子后脱袜子”解决了学生解决了学生可能可能会出现的认知障碍学生可以借助于此更好地理解公式会出现的认知障碍学生可以借助于此更好地理解公式(AB)-1=B-1A-1 10新教材的螺
24、旋上升体系随处可见,课本在本节中就通新教材的螺旋上升体系随处可见,课本在本节中就通过证明命题过证明命题“已知已知A,B,C为二阶矩阵,且为二阶矩阵,且AB=AC,若矩,若矩阵阵A存在逆矩阵,则存在逆矩阵,则B=C”而既做到前后章节间的呼应,而既做到前后章节间的呼应,又要求学生会用逆矩阵的知识解释二阶矩阵的乘法何时满又要求学生会用逆矩阵的知识解释二阶矩阵的乘法何时满足消去率足消去率11.11.逆矩阵与二元一次方程组密切相关,用逆矩阵的知识逆矩阵与二元一次方程组密切相关,用逆矩阵的知识理解二元一次方程组的求解过程是为了让学生更好的认识理解二元一次方程组的求解过程是为了让学生更好的认识两者,理解它们
25、间的相互为用、相辅相成两者,理解它们间的相互为用、相辅相成.482.4 逆变换与逆矩阵逆变换与逆矩阵12.492.4 逆变换与逆矩阵逆变换与逆矩阵12.AX=B X=AX=A-1-1B B 13.AXC=B X=AX=A-1-1BCBC-1-1 14.502.4 逆变换与逆矩阵逆变换与逆矩阵15.用二阶矩阵和行列式研究二元一次方程组的解的情用二阶矩阵和行列式研究二元一次方程组的解的情况并不比消元法优越多少况并不比消元法优越多少.但是但是,当方程组中的未知元当方程组中的未知元很多时很多时,矩阵就变成了研究它的一个强有力的工具矩阵就变成了研究它的一个强有力的工具.512.1 二阶矩阵与平面向量二阶
26、矩阵与平面向量2.2 几种常见的平面变换几种常见的平面变换2.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法2.4 逆矩阵与逆变换逆矩阵与逆变换2.5 特征值与特征向量特征值与特征向量2.6 矩阵的简单应用矩阵的简单应用具体内容解析具体内容解析522.5 特征值与特征向量特征值与特征向量建议课时建议课时:2课时课时教育目标教育目标:1.掌握矩阵特征值与特征向量的定义掌握矩阵特征值与特征向量的定义,能从几何变换的角能从几何变换的角度说明特征向量的意义度说明特征向量的意义.2.会求二阶矩阵的特征值与特征向量会求二阶矩阵的特征值与特征向量.3.利用矩阵利用矩阵A的特征值的特征值,特征向量给出特征向
27、量给出A An n的的简单简单表示表示.532.5 特征值与特征向量特征值与特征向量1.在本节开始部分,课本安排了两个学生熟知的伸压变换在本节开始部分,课本安排了两个学生熟知的伸压变换,并给出了变换前后的图形,其目的在于让学生借助于感,并给出了变换前后的图形,其目的在于让学生借助于感性理解在矩阵的作用下某些向量的性理解在矩阵的作用下某些向量的“不变性不变性”,从而为学,从而为学生生学习特征值和特征向量打下坚实基础学习特征值和特征向量打下坚实基础2.3.将矩阵的特征值与特征向量概念转换成矩阵与列向量的将矩阵的特征值与特征向量概念转换成矩阵与列向量的乘法表示来理解,其目的在于引出矩阵的特征多项式课
28、乘法表示来理解,其目的在于引出矩阵的特征多项式课本没有对特征多项式作展开讨论,其意图是仅仅让学生将本没有对特征多项式作展开讨论,其意图是仅仅让学生将之作为一个工具之作为一个工具542.5 特征值与特征向量特征值与特征向量4.5.552.5 特征值与特征向量特征值与特征向量562.5 特征值与特征向量特征值与特征向量6.一个特征值对应着多个特征向量一个特征值对应着多个特征向量.7.有了特征值和特征向量的知识有了特征值和特征向量的知识,我们就可以方便地计我们就可以方便地计算多次变换的结果算多次变换的结果.572.5 特征值与特征向量特征值与特征向量582.5 特征值与特征向量特征值与特征向量投影变
29、换投影变换592.1 二阶矩阵与平面向量二阶矩阵与平面向量2.2 几种常见的平面变换几种常见的平面变换2.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法2.4 逆矩阵与逆变换逆矩阵与逆变换2.5 特征值与特征向量特征值与特征向量2.6 矩阵的简单应用矩阵的简单应用具体内容解析具体内容解析602.6 矩阵的简单应用矩阵的简单应用建议课时建议课时:2课时课时教育目标教育目标:1.初步了解高阶矩阵初步了解高阶矩阵.2.了解矩阵的简单应用了解矩阵的简单应用.612.6 矩阵的简单应用矩阵的简单应用1.只要求学生对高阶矩阵有一个感性认识只要求学生对高阶矩阵有一个感性认识.2.通过本节的学习通过本节的学
30、习,让学生了解到矩阵来源于实际生活需让学生了解到矩阵来源于实际生活需要要.3.课本介绍了矩阵在数学领域内的应用课本介绍了矩阵在数学领域内的应用,也介绍了它在经也介绍了它在经济学领域济学领域、密码学领域、生物学领域的应用、密码学领域、生物学领域的应用.622.6 矩阵的简单应用矩阵的简单应用5.课本介绍了课本介绍了“七桥问题七桥问题”,这个问题的解决既符合学生这个问题的解决既符合学生的实际的实际,又能够引导学生了解更多的数学史内容又能够引导学生了解更多的数学史内容(选修选修3-1)4.课本介绍了网络图课本介绍了网络图、一级路、一级路矩阵和二级路矩阵矩阵和二级路矩阵,意图在意图在于介绍高阶矩阵和激
31、发学生学习图论的兴趣于介绍高阶矩阵和激发学生学习图论的兴趣,为其它选修为其它选修专题的开设打下基础专题的开设打下基础.632.6 矩阵的简单应用矩阵的简单应用6.本节的难点在于种群问题的解决本节的难点在于种群问题的解决.(例例6)642.6 矩阵的简单应用矩阵的简单应用652.6 矩阵的简单应用矩阵的简单应用662.6 矩阵的简单应用矩阵的简单应用672.1 二阶矩阵与平面向量二阶矩阵与平面向量2.2 几种常见的平面变换几种常见的平面变换2.3 变换的复合与矩阵的乘法变换的复合与矩阵的乘法2.4 逆矩阵与逆变换逆矩阵与逆变换2.5 特征值与特征向量特征值与特征向量2.6 矩阵的简单应用矩阵的简
32、单应用 学习总结报告学习总结报告主要内容主要内容68学习总结报告学习总结报告报告分三个方面的内容报告分三个方面的内容:1.知识的总结知识的总结.理解本专题的整体思路、结构和内容理解本专题的整体思路、结构和内容.进一进一步认识变换的思想步认识变换的思想.2.拓展拓展.通过查阅资料、调查报告、访问求教、独立思考通过查阅资料、调查报告、访问求教、独立思考,对矩阵及其应用作进一步探讨对矩阵及其应用作进一步探讨.3.学习本专题的感受和体会学习本专题的感受和体会.69l教学建议教学建议701.本专题只对具体的二阶方阵加以讨论本专题只对具体的二阶方阵加以讨论,而不讨论一般而不讨论一般mn阶矩阵以及阶矩阵以及
33、(aij)形式的矩阵形式的矩阵.教学建议教学建议2.矩阵的引入要从具体的实例开始矩阵的引入要从具体的实例开始,通过具体的实例让学通过具体的实例让学生认识到生认识到,某些几何变换可以用矩阵表示某些几何变换可以用矩阵表示,丰富学生对矩阵丰富学生对矩阵几何意义的理解几何意义的理解,并引导学生用映射的观点来认识矩阵并引导学生用映射的观点来认识矩阵,解解线性方程组线性方程组.不提倡先讲矩阵不提倡先讲矩阵,后讲变换后讲变换.3.要求从图形的变换直观地理解矩阵的乘法要求从图形的变换直观地理解矩阵的乘法,并通过具体并通过具体的实例让学生理解矩阵乘法的运算率的实例让学生理解矩阵乘法的运算率.714.在新课讲解过
34、程中适当地复习映射和一一映射在新课讲解过程中适当地复习映射和一一映射.教学建议教学建议5.应通过大量实例应通过大量实例,借助立体几何图形的三视图来研究平借助立体几何图形的三视图来研究平面图形的几何变换面图形的几何变换,这样会让学生感到生动这样会让学生感到生动,单纯的平面几单纯的平面几何变换比较抽象何变换比较抽象.6.可以将伸压变换与数学可以将伸压变换与数学4中的三角变换结合起来中的三角变换结合起来,体现知体现知识的螺旋上升识的螺旋上升.7.注意伸压变换和伸缩变换的异同注意伸压变换和伸缩变换的异同.728.在证明二阶非零矩阵对应的变换把直线变为直线在证明二阶非零矩阵对应的变换把直线变为直线(或点
35、或点)时时,学生可能会感到困难学生可能会感到困难,教师可以先复习定比分点的有关教师可以先复习定比分点的有关知识知识.自一部分内容不要求掌握自一部分内容不要求掌握,只要求学生能够直观地理只要求学生能够直观地理解线性变换把直线变成直线解线性变换把直线变成直线(或点或点).教学建议教学建议9.切变变换从几何上可以这样理解切变变换从几何上可以这样理解:保持图形面积大小不保持图形面积大小不变变,而点间距离和线间角可以改变而点间距离和线间角可以改变,且点沿坐标轴运动的变且点沿坐标轴运动的变换换.这些不要求学生掌握这些不要求学生掌握,只要求学生能结合图形只要求学生能结合图形,用书上用书上的方式直观描述的方式
36、直观描述.7310.对于矩阵乘法满足结合率对于矩阵乘法满足结合率,可让学生自己动手验证可让学生自己动手验证.教学建议教学建议11.行列式知识只限于二阶行列式,它仅仅是作为一个工行列式知识只限于二阶行列式,它仅仅是作为一个工具来使用,不作为重点,不应展开讨论具来使用,不作为重点,不应展开讨论12.对二元一次方程组来说,用求逆矩阵的方法来解方程对二元一次方程组来说,用求逆矩阵的方法来解方程组并不简便,这里强调的是其思想,无需做大量练习组并不简便,这里强调的是其思想,无需做大量练习13.从具体伸压变换引入从具体伸压变换引入“不变性不变性”不可缺少,只有在建立感不可缺少,只有在建立感性认识后才能对学生
37、提出更高要求,不应该从定义上形式性认识后才能对学生提出更高要求,不应该从定义上形式地理解特征值和特征向量地理解特征值和特征向量74教学建议教学建议14.14.课课本介本介绍绍了特征多了特征多项项式,只是将它作式,只是将它作为为求解特征求解特征值值的的一个工具使用,不需要展开一个工具使用,不需要展开讨论讨论但是但是对对如何得到如何得到这这个公个公式要作出解式要作出解释释,即要向学生,即要向学生说说明明为为何何有不全有不全为为零的解零的解时时要要D=0D=015.将直观观察特征值与特征向量和利用特征多项式来解特将直观观察特征值与特征向量和利用特征多项式来解特征值与特征向量结合起来考虑,互相验证,这
38、也是数学研征值与特征向量结合起来考虑,互相验证,这也是数学研究的一种常用思路和方法,用形的直观探索解题的道路,究的一种常用思路和方法,用形的直观探索解题的道路,用数的严谨求解问题用数的严谨求解问题75教学建议教学建议16.网络图是图论的基础,我们可以鼓励有兴趣的学生学习网络图是图论的基础,我们可以鼓励有兴趣的学生学习选修选修4-8,在此不要展开与扩充有关知识对于例,在此不要展开与扩充有关知识对于例5,我们,我们也可以引导有兴趣的学生去学习选修也可以引导有兴趣的学生去学习选修4-6中的公开密钥中的公开密钥17.讲解例讲解例6种群问题时可以适当变换问题背景(例如两个种群问题时可以适当变换问题背景(例如两个商场间的顾客量等),通过这个变化来说明特征值和特征商场间的顾客量等),通过这个变化来说明特征值和特征向量应用的多样性、多方位向量应用的多样性、多方位7677