33二元一次不等式(组)与简单线性规划问题.ppt

上传人:飞**** 文档编号:79281989 上传时间:2023-03-20 格式:PPT 页数:13 大小:258KB
返回 下载 相关 举报
33二元一次不等式(组)与简单线性规划问题.ppt_第1页
第1页 / 共13页
33二元一次不等式(组)与简单线性规划问题.ppt_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《33二元一次不等式(组)与简单线性规划问题.ppt》由会员分享,可在线阅读,更多相关《33二元一次不等式(组)与简单线性规划问题.ppt(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、xyo可行域上的最优解可行域上的最优解0 xy4348己知己知x,yx,y满足下列条件满足下列条件:问题:问题:求求2x+3y的最大值的最大值.若设若设z=2x+3y,上述问题转化为上述问题转化为:当当x,y在满足上述约束条件时在满足上述约束条件时,z的最大值为多少的最大值为多少?0 xy4348M(4,2)问题:问题:求求z=2x+3y的最大值的最大值.象这样关于象这样关于x,yx,y一次不等一次不等式组的约束条件称为式组的约束条件称为线性约束线性约束条件条件Z=2x+3yZ=2x+3y称为目标函数称为目标函数,(,(因这里因这里目标函数为关于目标函数为关于x,yx,y的一次式的一次式,又又

2、称为称为线性目标函数线性目标函数 在线性约束下求线性目标函数在线性约束下求线性目标函数的最值问题的最值问题,统称为统称为线性规划线性规划,满足线性约束的解满足线性约束的解(x,yx,y)叫做叫做可行解可行解,所有可行解组成的集合叫做所有可行解组成的集合叫做可行域可行域使目标函数使目标函数取得最值取得最值的可行解叫做这个的可行解叫做这个问题的问题的最优解最优解0 xy4348N N(2 2,3 3)变式:变式:求求z=x+3y的最大值的最大值.练习练习解下列线性规划问题:解下列线性规划问题:1、求、求z=2x+y的最大值,使式中的的最大值,使式中的x、y满足约束条件:满足约束条件:xOyABCy

3、=x x+y=1y=-12x+y=0B:(-1,-1)C:(2,-1)Zmin=-3Zmax=3 目标函数:目标函数:Z=2x+y解线性规划问题的步骤:解线性规划问题的步骤:(2 2)移:在线性目标函数所表示的一组平行)移:在线性目标函数所表示的一组平行 线中,利用平移的方法找出与可行线中,利用平移的方法找出与可行 域有公共点且纵截距最大或最小的直线域有公共点且纵截距最大或最小的直线 (3 3)求:通过解方程组求出最优解;)求:通过解方程组求出最优解;(4 4)答:作出答案。)答:作出答案。(1 1)画:画出线性约束条件所表示的可行域;)画:画出线性约束条件所表示的可行域;体验体验:二、二、最

4、优解最优解一般在可行域的一般在可行域的顶点顶点处取得处取得三、在哪个顶点取得不仅与三、在哪个顶点取得不仅与B B的符号有关,的符号有关,而且还与直线而且还与直线 Z=Z=Ax+ByAx+By的的斜率斜率有关有关一、一、先定先定可行域和平移方向,再找最优解。可行域和平移方向,再找最优解。小小 结结 本节主要学习了线性约束下如何求目本节主要学习了线性约束下如何求目标函数的标函数的最值问题最值问题 正确列出变量的不等关系式正确列出变量的不等关系式,准确准确作出作出可行域可行域是解决目标函数最值的关健是解决目标函数最值的关健 线性目标函数的最值一般都是在可行域线性目标函数的最值一般都是在可行域的的顶点或边界顶点或边界取得取得.把目标函数转化为某一直线把目标函数转化为某一直线,其斜率与其斜率与可行域边界所在直线可行域边界所在直线斜率的大小关系斜率的大小关系一定要一定要弄清楚弄清楚.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁