《集合的基本运算教案.ppt》由会员分享,可在线阅读,更多相关《集合的基本运算教案.ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 新课导入新课导入 集合之间的基本关系是类比实数之间的关系集合之间的基本关系是类比实数之间的关系得到的,同样类比实数的运算,能否得到集合之得到的,同样类比实数的运算,能否得到集合之间的运算呢?间的运算呢?想一想想一想 实数有加法运算,那么实数有加法运算,那么集合是否也有集合是否也有“加法加法”呢?呢?1.1.3 集合的基本运算集合的基本运算AB 教学目标教学目标 知识与能力知识与能力 (1)理解两个集合的并集与交集的定义,会求)理解两个集合的并集与交集的定义,会求两个简单集合的交集与并集两个简单集合的交集与并集.(2)理解在给定集合中一个子集的补集的含义,)理解在给定集合中一个子集的补集的含义
2、,会求给定子集的补集会求给定子集的补集.(3)能使用)能使用Venn图表达集合的运算,体会直观图表达集合的运算,体会直观图对理解抽象概念的作用图对理解抽象概念的作用.教学重难点教学重难点 重点重点交集与并集,全集与补集的概念交集与并集,全集与补集的概念.难点难点理解交集与并集的概念、符号之间的区别与联系理解交集与并集的概念、符号之间的区别与联系.下列各个集合,你能说出集合下列各个集合,你能说出集合C与集合与集合A,B之间的关系吗?之间的关系吗?(1)A=a,b,B=c,d,C=a,b,c,d;(2)A=x x是有理数是有理数,B=x x是无理数是无理数,C=x x是实数是实数;(3)A=x|1
3、x6,B=x|4x8,C=x|1x8;观观 察察集合集合A集合集合B集合集合CA246810-2BC 请观察请观察A,B,C这些集合之间是什么关系?这些集合之间是什么关系?a,bc,da,b,c,dx是有理数是有理数x是无理数是无理数x是实数是实数集合集合C是由所有属于集合是由所有属于集合A或属于集合或属于集合B的元素组成的元素组成.一般地一般地,由所有属于集合由所有属于集合A或属于集合或属于集合B的元的元素所组成的集合素所组成的集合,称为集合称为集合A与与B的并集的并集,记作记作AB(读作读作“A并并B”),即即 AB=x|x A,或或x B知识要知识要点点1.并集并集用用Venn图表示:图
4、表示:ABAB例例 设设A=a,b,c,B=a,c,d,f,求求AB.解解:AB=a,b,c a,c,d,f =a,b,c,d,f例例 设集合设集合A=x|-4x2,集合集合B=x|1x4,求求AB.解解:AB=x|-4x2 x|1x4 =x|-4x4注意:求两个集合的并集时,注意:求两个集合的并集时,它们的公共元素在并集中只它们的公共元素在并集中只能出现一次能出现一次.如:如:a,c.在数轴上表示并集在数轴上表示并集-4-3-2-1 0 1 2 34ABAB观观 察察 下列各个集合下列各个集合,你能说出集合你能说出集合A,B与集合与集合C之间之间的关系吗的关系吗?(1)A=2,4,6,8,1
5、0,B=2,3,5,8,9,12,C=2,8;(2)A=x|1x6,B=x|4x8,C=x|4x-1,B=x|x-1x|x1=x|-1x1解:解:AB=x|x是等腰三角形是等腰三角形x|x是直角三角形是直角三角形 =x|x是等腰直角三角形是等腰直角三角形1-10AB方程方程 的解集,在有理数范围内有几的解集,在有理数范围内有几个解?分别是什么?个解?分别是什么?在不同的范围内研究问题,结果是不同的,为在不同的范围内研究问题,结果是不同的,为此,需要确定研究对象的范围此,需要确定研究对象的范围.想一想想一想在实数范围内有几个解?分别是什么?在实数范围内有几个解?分别是什么?1个个,1 一般地一般
6、地,如果一个集合含有我们所研究问题中如果一个集合含有我们所研究问题中所涉及的所有元素所涉及的所有元素,那么就称这个集合为那么就称这个集合为全集全集,通常通常记作记作U.通常也把给定的集合作为全集通常也把给定的集合作为全集.知识要知识要点点 对于一个集合对于一个集合A,由全集由全集U中不属于中不属于A的所有元素的所有元素组成的集合称为集合组成的集合称为集合A相对于全集相对于全集U的补集的补集,简称为简称为集合集合A的补集的补集.补集可用补集可用Venn图表示为图表示为:U UAA例例 设设 求求 解:解:将集合将集合 用数轴表示为用数轴表示为所以所以 -10123x 求用区间表示的集合的补集时,
7、求用区间表示的集合的补集时,要特别注意区间端点的归属要特别注意区间端点的归属例例 设设U=x|x是小于是小于7的正整数的正整数,A=1,2,3,B=3,4,5,6,求求 UA,UB.例例 设全集设全集U=R,M=x|x1,N=x|0 x1,则则 U M,U N.解:根据题意可知解:根据题意可知 U M=x|x1,U N=x|x0且且x1.解解:根据题意可知根据题意可知,U=1,2,3,4,5,6,所以所以 UA=4,5,6 UB=1,2.教材习题答案教材习题答案 例例 设集合设集合A4,2m1,m2,B9,m5,1m,又,又AB9,求,求AB?解:解:(1)若若2m-19,得,得m5,得,得A
8、-4,9,25,B9,0,-4,得得AB-4,9,不符合题,不符合题.(2)若若m29,得,得m3或或m-3,m3时,时,A-4,5,9,B9,-2,-2违反互异性,舍去违反互异性,舍去.当当m-3时,时,A-4,-7,9,B9,-8,4符合题意。此时符合题意。此时AB-4,-7,9,-8,4由由(1)(2)可知:可知:m-3,AB-4,-7,9,-8,46.设设A=2,-1,x2-2x+1,B=2y,-4,x+1,C=-1,4 且且AB=C,求求x,y?解:由解:由AB=C知知 4 A 必然必然 x22x+1=4 得得 x1=-1,x2=3由由x=1 得得 x+1=0 C x 1 x=3 x
9、+1=4 C 此时此时2y=1,y=1/2 综上所述综上所述x=3,y=1/2.课堂小结课堂小结 集合运算集合运算补运算补运算并运算并运算交运算交运算 进行以不等式描述的或以区间形式出现的进行以不等式描述的或以区间形式出现的集合间的并、交、补运算时,一定要画数轴帮集合间的并、交、补运算时,一定要画数轴帮助分析助分析.高考链接高考链接 B=0,2,则集合,则集合A*B的所有元素之和为(的所有元素之和为()1.(2008 江西江西)定义集合运算:定义集合运算:设设 A=1,2A.0 B.2 C.3 D.6解:由条件可知解:由条件可知A*B=0,2,4,所以之和为,所以之和为6.D2.(2009 上
10、海)已知集合上海)已知集合A=x|x1,B=x|xa,且且AB=R,则实数则实数a的取值范围是的取值范围是解:解:AB=(-,1 a,+)=R,a1a13.(2009 广东广东)已知全集已知全集U=R,则正确表,则正确表示集合示集合M=-1,0,1和和N=x|+x=0关关系的韦恩(系的韦恩(Venn)图是)图是 ()N MUNMUNMUMNUA BCDB 课堂练习课堂练习 1.判断正误判断正误.(1)若)若U=四边形四边形,A=梯形梯形,则,则 UA=平行四平行四边形边形(2)若)若U是全集,且是全集,且A B,则,则 UA CUB(3)若)若U=1,2,A=U,则,则 UA=2.求求3求求-2-1 0 12 34AB解解:将集合将集合A、B在数轴上表示(如图),在数轴上表示(如图),4.设设 求求 所以所以 5.设设 求求解:解方程组解:解方程组 得得所以所以 x-10123AB