《运筹学04-线性规划问题在工商管理中的应用.ppt》由会员分享,可在线阅读,更多相关《运筹学04-线性规划问题在工商管理中的应用.ppt(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、线性规划在工商管理中的应用线性规划在工商管理中的应用n1 1 人力资源分配的问题n2 2 生产计划的问题n3 3 套裁下料问题n4 4 投资问题14.1 人力资源分配问题人力资源分配问题 例1某昼夜服务的公交线路每天各时间段内所需司机和乘务人员数如下:设司机和乘务人员分别在各时间段一开始时上班,并连续工作八小时,问该公交线路怎样安排司机和乘务人员,既能满足工作需要,又配备最少司机和乘务人员?24.1 人力资源分配问题人力资源分配问题 解:设 xi 表示第i班次时开始上班的司机和乘务人员数,这样我们建立如下的数学模型。目标函数:Min x1+x2+x3+x4+x5+x6 约束条件:s.t.x1+
2、x6 60 x1+x2 70 x2+x3 60 x3+x4 50 x4+x5 20 x5+x6 30 x1,x2,x3,x4,x5,x6 034.1 人力资源分配问题人力资源分配问题 例2一家中型的百货商场,它对售货员的需求经过统计分析如下表所示。为了保证售货人员充分休息,售货人员每周工作5天,休息两天,并要求休息的两天是连续的。问应该如何安排售货人员的作息,既满足工作需要,又使配备的售货人员的人数最少?44.1 人力资源分配问题人力资源分配问题 解:设 xi(i=1,2,7)表示星期一至日开始休息的人数,这样我们建立如下的数学模型。目标函数:Min x1+x2+x3+x4+x5+x6+x7
3、约束条件:s.t.x1+x2+x3+x4+x5 28 x2+x3+x4+x5+x6 15 x3+x4+x5+x6+x7 24 x4+x5+x6+x7+x1 25 x5+x6+x7+x1+x2 19 x6+x7+x1+x2+x3 31 x7+x1+x2+x3+x4 28 x1,x2,x3,x4,x5,x6,x7 054.2 生产计划问题生产计划问题 例3某公司面临一个是外包协作还是自行生产的问题。该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。数据如表。问:公司为了获得最大利润,甲、乙、丙三种
4、产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?64.2 生产计划问题生产计划问题 解:设 x1,x2,x3 分别为三道工序都由本公司加工的甲、乙、丙三种产品的件数,x4,x5 分别为由外协铸造再由本公司加工和装配的甲、乙两种产品的件数。求 xi 的利润:利润=售价-各成本之和 产品甲全部自制的利润 =23-(3+2+3)=15 产品甲铸造外协,其余自制的利润 =23-(5+2+3)=13 产品乙全部自制的利润 =18-(5+1+2)=10 产品乙铸造外协,其余自制的利润 =18-(6+1+2)=9 产品丙的利润 =16-(4+3+2)=7 可得xi(i=1,2,
5、3,4,5)的利润分别为15、10、7、13、9 元。74.2 生产计划问题生产计划问题通过以上分析,可建立如下的数学模型:目标函数:Max 15x1+10 x2+7x3+13x4+9x5 约束条件:5x1+10 x2+7x3 8000 6x1+4x2+8x3+6x4+4x5 12000 3x1+2x2+2x3+3x4+2x5 10000 x1,x2,x3,x4,x5 084.3 套材下料问题套材下料问题 例5某工厂要做100套钢架,每套用长为2.9 m,2.1 m,1.5 m的圆钢各一根。已知原料每根长7.4 m,问:应如何下料,可使所用原料最省?94.3 套材下料问题套材下料问题 设 x1
6、,x2,x3,x4,x5 分别为上面 5 种方案下料的原材料根数。这样我们建立如下的数学模型。目标函数:Min x1+x2+x3+x4+x5 约束条件:s.t.x1+2x2 +x4 100 2x3 +2x4+x5 100 3x1+x2+2x3 +3x5 100 x1,x2,x3,x4,x5 0104.4 投资问题投资问题例8某部门现有资金200万元,今后五年内考虑给以下的项目投资。已知:项目A:从第一年到第五年每年年初都可投资,当年末能收回本利110%;项目B:从第一年到第四年每年年初都可投资,次年末能收回本利125%,但规定每年最大投资额不能超过30万元;项目C:需在第三年年初投资,第五年末
7、能收回本利140%,但规定最大投资额不能超过80万元;项目D:需在第二年年初投资,第五年末能收回本利155%,但规定最大投资额不能超过100万元。据测定每万元每次投资的风险指数如表:问:问:a)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利金额为最大?b)应如何确定这些项目的每年投资额,使得第五年年末拥有资金的本利在330万元的基础上使得其投资总的风险系数为最小?项目ABCD风险指数(次/万元)1345.5114.4 投资问题投资问题 解:解:1 1)确定决策变量:连续投资问题 设 xij(i=15,j=14)表示第 i 年初投资于A(j=1)、B(j=2)、C(j=3)、D(j
8、=4)项目的金额。这样我们建立如下的决策变量:A x11 x21 x31 x41 x51 B x12 x22 x32 x42 C x33 D x24124.4 投资问题投资问题2 2)约束条件:)约束条件:第一年:x11+x12=200;第二年:x21+x22+x24=1.1x11;第三年:x31+x32+x33=1.1x21+1.25x12;第四年:x41+x42=1.1x31+1.25x22;第五年:x51=1.1x41+1.25x32;B、C、D的投资限制:xi2 30(i=1、2、3、4),x33 80,x24 100 134.4 投资问题投资问题3 3)目标函数及模型:)目标函数及模
9、型:a)a)Max z=1.1x51+1.25x42+1.4x33+1.55x24 s.t.x11+x12=200 x21+x22+x24=1.1x11;x31+x32+x33=1.1x21+1.25x12;x41+x42=1.1x31+1.25x22;x51=1.1x41+1.25x32;xi2 30(i=1、2、3、4)x33 80 x24 100 xij 0 (i=1-5;j=1-4)144.4 投资问题投资问题b)b)所设变量与问题a相同,目标函数为风险最小,有 Min f=x11+x21+x31+x41+x51+3(x12+x22+x32+x42)+4x33+5.5x24 在问题a的约束条件中加上“第五年末拥有资金本利在330万元”的条件,于是模型如下:Min f=(x11+x21+x31+x41+x51)+3(x12+x22+x32+x42)+4x33+5.5x24 s.t.x11+x12=200 x21+x22+x24=1.1x11;x31+x32+x33=1.1x21+1.25x12;x41+x42=1.1x31+1.25x22;x51=1.1x41+1.25x32;xi2 30(i=1、2、3、4),x33 80,x24 100 1.1x51+1.25x42+1.4x33+1.55x24 330 xij 0 (i=1、2、3、4、5;j=1、2、3、4)15