“二元一次不等式组与简单的线性规划问题”复习课.doc

上传人:飞****2 文档编号:78785089 上传时间:2023-03-19 格式:DOC 页数:5 大小:255.50KB
返回 下载 相关 举报
“二元一次不等式组与简单的线性规划问题”复习课.doc_第1页
第1页 / 共5页
“二元一次不等式组与简单的线性规划问题”复习课.doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《“二元一次不等式组与简单的线性规划问题”复习课.doc》由会员分享,可在线阅读,更多相关《“二元一次不等式组与简单的线性规划问题”复习课.doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、二元一次不等式组与简单的线性规划问题一、知识归纳:1二元一次不等式表示的平面区域:二元一次不等式在平面直角坐标系中表示直线某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线).对于在直线同一侧的所有点,实数的符号相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从的正负即可判断表示直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)2线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。分别使目标函数取得最大值和最小值的可行解叫做最优解。3线性规划问题应用题的求解步骤:(1)

2、先设出决策变量,找出约束条件和线性目标函数;(2)作出相应的图象(注意特殊点与边界)(3)利用图象,在线性约束条件下找出决策变量,使线性目标函数达到最大(小)值; 二、例题分析:例1画出不等式表示的平面区域.点在直线的上方,则的取值范围是_. 画出不等式组表示的平面区域, 并求出平面区域的面积, 并求出平面区域内的整点。 例2设满足约束条件:,分别求下列目标函数的的最大值与最小值:(1); (2); (3); (4) 例3某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元。

3、该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.求该企业可获得最大利润。例3解析 设生产甲产品吨,生产乙产品吨,则有关系: A原料 B原料甲产品吨 3 2乙产品吨 3(3,4)(0,6)O(,0)913 则有: ,目标函数 作出可行域后求出可行域边界上各端点的坐标,经验证知: 当3,4时可获得最大利润为27万元。三、练习题:1不等式表示的平面区域是( D) A BCD2满足不等式的点的集合(用阴影表示)是B AB CD3已知点的坐标满足条件,点为坐标原点,那么的最小值等于_,最大值等于_.4如果实数满足条件,那么的最大值为BA B C D5.已知点P(x,y)在不等式组表示的

4、平面区域上运动,则的取值范围是CA2,1B2,1 C1,2 D1,26已知满足约束条件,则的最小值是BA5 B6 C10 D107在平面直角坐标系中,不等式组表示的平面区域的面积是 BA4 B4 C2 D2 8已知满足约束条件,则的取值范围是 9点到直线的距离为,且在表示的区域内,则_16_ 10.若为不等式组表示的平面区域,则当从2连续变化到1时,动直线 扫过中的那部分区域的面积为 11设变量、满足约束条件,则目标函数的最小值为_3_12设x,y满足约束条件 ,若目标函数的是最大值为12,则的最小值为_13 某厂生产A与B两种产品,每公斤的产值分别为600元与400元.又知每生产1公斤A产品

5、需要电力2千瓦、煤4吨;而生产1公斤B产品需要电力3千瓦、煤2吨.但该厂的电力供应不得超过100千瓦,煤最多只有120吨.问如何安排生产计划以取得最大产值? 13解:设生产A与B两种产品分别为x公斤,y公斤,总产值为Z元。则且作可行域:作直线l:600x+400y=0,即直线l:3x+2y=0,把直线l向右上方平移至l1的位置时,直线经过可行域上的点A,且与原点距离最大,此时z=600x+400y取最大值.解方程组,得A的坐标为x=20,y=20答:生产A产品20公斤、B产品20公斤才能才能使产值最大。14某公司准备进行两种组合投资,稳健型组合投资是由每份金融投资20万元,房地产投资30万元组

6、成;进取型组合投资是由每份金融投资40万元,房地产投资30万元组成。已知每份稳健型组合投资每年可获利10万元,每份进取型组合投资每年可获利15万元。若可作投资用的资金中,金融投资不超过160万元,房地产投资不超过180万元,那么这两种组合投资应注入多少份,才能使一年获利总额最多?14解:设稳健型投资份,进取型投资份,利润总额为(10万元),则目标函数为(10万元),线性约束条件为:,即作出可行域(图略),解方程组,得交点作直线,平移,当过点M时,取最大值:万元=70万元。15某公司计划2009年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准

7、分别为元/分钟和200元/分钟,规定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?15解:设公司在甲电视台和乙电视台做广告的时间分别为分钟和分钟,总收益为元,由题意得 或即 0100200300100200300400500yxlM目标函数为 线性约束条件为作出二元一次不等式组所表示的平面区域,即可行域如图:作直线,即平移直线,从图中可知,当直线过点时,目标函数取 得最大值联立解得点的坐标为 (元)答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁