线段的垂直平分线(教案).doc

上传人:飞****2 文档编号:78750305 上传时间:2023-03-19 格式:DOC 页数:5 大小:41.50KB
返回 下载 相关 举报
线段的垂直平分线(教案).doc_第1页
第1页 / 共5页
线段的垂直平分线(教案).doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《线段的垂直平分线(教案).doc》由会员分享,可在线阅读,更多相关《线段的垂直平分线(教案).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1.3.1线段的垂直平分线(教案) 教学目标(一)教学知识点1经历探索、猜测过程,能够运用公理和所学过的定理证明线段垂直平分线的性质定理和判定定理2能够利用尺规作已知线段的垂直平分线(二)思维训练要求1经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力2体验解决问题策略的多样性,发展实践能力和创新精神3学会与人合作,并能与他人交流思维的过程和结果(三)情感与价值观要求1能积极参与数学学习活动,对数学有好奇心和求知欲2在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心教学重点1能够证明线段的垂直平分线的性质定理、判定定理及其相关结论2能够利用尺规作已知线段的垂直平分线教学难点

2、写出线段垂直平分线的性质定理的逆命题并证明它教具准备多媒体演示、直尺、圆规教学过程创设现实情境,引入新课教师用多媒体演示:如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置? 生码头应建在线段AB的垂直平分线与在A,B一侧的河岸边的交点上师同学们认同他的看法吗?生是的师认为对的说说你的理由是什么呢?生(回忆定理)我们以前曾学过线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等所以在这个问题中,要求在“A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等”利用此性质就能完成师(边说边用折纸的方法再现定理)这位同学分析

3、得很好,我们在七年级时研究过线段的性质,线段是一个轴对称图形,其中线段的垂直平分线就是它的对称轴我们曾经像这样利用折纸的方法得到“线段垂直平分线上的点到线段两个端点的距离相等”这一简单事实,但是用这种观察的方式是很难说服别人的,你能用公理或学过的定理来证明这一结论吗?教师演示线段垂直平分线的性质:定理 线段垂直平分线上的点到线段两个端点的距离相等讲述新课第一部分 线段垂直平分线的性质定理师我们从折纸的过程中得到了线段垂直平分线的性质定理,大家知道这是不够的,还必须利用公理及已学过的定理推理、证明它那么如何证明呢?师(引导)问题一:要证“线段垂直平分线上的点到线段两个端点的距离相等”,可线段垂直

4、平分线上的点有无数多个,需一个一个依次证明吗?(强调)我们只需在线段垂直平分线上任取一点代表即可,因为线段垂直平分线上的点都具有相同的性质(开始让学生有这样的数学思想)你能根据定理画图并写出已知和求证吗?谁能帮老师分析一下证明思路?生(思考回答) 师生共析已知:如图,直线MNAB,垂足是C,且ACBC,P是MN上的点求证:PAPB分析:要想证明PAPB,可以考虑包含这两条线段的两个三角形是否全等证明:MNAB,PCAPCB90ACBC,PCPC,PCAPCB(SAS)PAPB(全等三角形的对应边相等)第二部分 线段垂直平分线的判定定理教师用多媒体完整演示证明过程同时,用多媒体呈现:想一想你能写

5、出上面这个定理的逆命题吗?它是真命题吗?师(引导、并提问两学生)问题二:这个命题是否属于“如果那么”的形式?你能分析原命题的条件和结论,将原命题写成“如果那么”的形式吗?最后再把它的逆命题写出来生A(思考分析)原命题的条件是“有一个点是线段垂直平分线上的点”结论是“这个点到线段两个端点的距离相等”师有了这位同学的精彩分析,逆命题就很容易写出来生B如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上师很好,能否把它描述得更简捷呢?生B到线段两个端点的距离相等的点在这条线段的垂直平分线上师 当我们写出逆命题时,就想到判断它的真假如果真,则需证明它;如果假,则需用反例说明请同学们

6、类比原命题自己独立写出已知、求证(给学生思考空间)已知:线段AB,点P是平面内一点且PAPB求证:P点在AB的垂直平分线上(分组讨论,鼓励学生多想证明方法,并派代表上黑板写写本组的证明过程)师看学生的具体情况,做适当的引导证法一:证明:过点P作已知线段AB的垂线PCPAPB,PCPC,RtPACRtPBC(HL定理)ACBC,即P点在AB的垂直平分线上证法二:证明:取AB的中点C,过PC作直线APBP,PCPC,ACCB,APCBPC(SSS)PCAPCB(全等三角形的对应角相等)又PCAPCB180,PCAPCB90,即PCABP点在AB的垂直平分线上证法三:证明:过P点作APB的角平分线A

7、PBP,12,PCPC,APCBPC(SAS)ACDC,PCAPCB(全等三角形的对应角相等,对应边相等)又PCAPCB180,PCAPCB90P点在线段AB的垂直平分线上师先肯定学生的思考,再对证明过程严谨的小组加以表扬,不足的加以点评和纠正。师从同学们的推理证明过程可知线段垂直平分线的性质定理的逆命题是真命题,我们把它称做线段垂直平分线的判定定理到现在我们已经学习了线段垂直平分线的性质定理和判定定理,下面小试牛刀教师多媒体演示:随堂练习(抢答):如图:已知AB是线段CD的垂直平分线,E是AB上的一点,如果EC=7cm,那么ED=_cm,如果ECD60,那么EDC_(让学生说出理由)第三部分

8、 用尺规作线段垂直平分线教师多媒体演示:做一做用尺规作线段的垂直平分线 师其实同学们也能用圆规、直尺画出优美的图形,下面咱们就一起来学用尺规作线段的垂直平分线。(分析:要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两个端点距离相等的点在这条线段的垂直平分线上,那么我们必须找到两个到线段两个端点距离相等的点,这样才能确定已知线段的垂直平分线)类似于证明题要写出已知、求证和证明,作图题也要根据条件写出已知、求作和作法,下面我们一同来写出已知、求作、作法,体会作法中每一步的依据教师示范,请学生同时练习已知:线段AB(如图)求作:线段AB的垂直平分线作法:1分别以点A和B为圆心,以大于AB的

9、长为半径作弧,两弧相交于点C和D2作直线CD直线CD就是线段AB的垂直平分线师根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线吗?请与同伴进行交流生从作法的第一步可知ACBC,ADBDC、D都在AB的垂直平分线上(线段垂直平分线的判定定理)CD就是线段AB的垂直平分线(两点确定一条直线)师我们曾用刻度尺找线段的中点,当我们学习了线段垂直平分线的作法时,一旦垂直平分线作出,线段与线段垂直平分线的交点就是线段AB的中点,所以我们也用这种方法作线段的中点随堂练习学生完成P23随堂练习,同桌之间相互检查批改,加深理解。课时小结本节课我们先推理证明了线段的垂直平分线的性质定理和判定定理,并学会用尺规作线段的垂直平分线课后作业习题17第1、3题板书设计一、线段垂直平分线的性质定理二、线段垂直平分线的判定定理三、用尺规作线段的垂直平分线

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁