《2021年江西省中考数学试卷(含解析).docx》由会员分享,可在线阅读,更多相关《2021年江西省中考数学试卷(含解析).docx(37页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021年江西省中考数学试卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1(3分)(2021江西)的相反数是A2BCD2(3分)(2021江西)如图,几何体的主视图是ABCD3(3分)(2021江西)计算的结果为A1BCD4(3分)(2021江西)如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是A一线城市购买新能源汽车的用户最多B二线城市购买新能源汽车用户达C三四线城市购买新能源汽车用户达到11万D四线城市以下购买新能源汽车用户最少5(3分)(2021江西)在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是A
2、BCD6(3分)(2021江西)如图是用七巧板拼接成的一个轴对称图形(忽略拼接线)小亮改变的位置,将分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为A2B3C4D5二、填空题(本大题共6小题,每小题3分,共18分)7(3分)(2021江西)国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记数法表示为8(3分)(2021江西)因式分解:9(3分)(2021江西)已知,是一元二次方程的两根,则10(3分)(2021江西)如表在我国宋朝数学家杨辉1261年的著作详解九章算法中提到过,因而人们把这个表
3、叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是 11(3分)(2021江西)如图,将沿对角线翻折,点落在点处,交于点,若,则的周长为 12(3分)(2021江西)如图,在边长为的正六边形中,连接,其中点,分别为和上的动点若以,为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为 三、(本大题共5小题,每小题6分,共30分)13(6分)(2021江西)(1)计算:;(2)如图,在中,平分交于点,于点,求证:14(6分)(2021江西)解不等式组:并将解集在数轴上表示出来15(6分)(2021江西)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从,
4、四名志愿者中通过抽签的方式确定两名志愿者参加抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字(1)“志愿者被选中”是事件(填“随机”或“不可能”或“必然” ;(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出,两名志愿者被选中的概率16(6分)(2021江西)已知正方形的边长为4个单位长度,点是的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹)(1)在图1中,将直线绕着正方形的中心顺时针旋转;(2)在图2中,将直线向上平移1个单位长度17(6
5、分)(2021江西)如图,正比例函数的图象与反比例函数的图象交于点在中,点坐标为(1)求的值;(2)求所在直线的解析式四、(本大题共3小题,每小题8分,共24分)18(8分)(2021江西)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件(1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是 元件,乙两次购买这种商品的平均单价是 元件(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(
6、2)的计算结果,建议按相同 加油更合算(填“金额”或“油量” 19(8分)(2021江西)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分某外贸公司要出口一批规格为的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77甲厂鸡腿质量频数统计表质量频数频
7、率20.130.151050.25合计201分析上述数据,得到下表:统计量厂家平均数中位数众数方差甲厂75766.3乙厂7575776.6请你根据图表中的信息完成下列问题:(1),;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:在的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?20(8分)(2021江西)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄与手臂始终在同一直线上,枪身与额头保持垂直量得胳膊,肘关节与枪身端点之间的
8、水平宽度为(即的长度),枪身(1)求的度数;(2)测温时规定枪身端点与额头距离范围为在图2中,若测得,小红与测温员之间距离为问此时枪身端点与小红额头的距离是否在规定范围内?并说明理由(结果保留小数点后一位)(参考数据:,五、(本大题共2小题,每小题9分,共18分)21(9分)(2021江西)如图1,四边形内接于,为直径,点作于点,连接(1)求证:;(2)若是的切线,连接,如图2请判断四边形的形状,并说明理由;当时,求,与围成阴影部分的面积22(9分)(2021江西)二次函数的图象交轴于原点及点感知特例(1)当时,如图1,抛物线上的点,分别关于点中心对称的点为,如表:,补全表格;在图1中描出表中
9、对称后的点,再用平滑的曲线依次连接各点,得到的图象记为形成概念我们发现形如(1)中的图象上的点和抛物线上的点关于点中心对称,则称是的“孔像抛物线”例如,当时,图2中的抛物线是抛物线的“孔像抛物线”探究问题(2)当时,若抛物线与它的“孔像抛物线” 的函数值都随着的增大而减小,则的取值范围为 ;在同一平面直角坐标系中,当取不同值时,通过画图发现存在一条抛物线与二次函数的所有“孔像抛物线” 都有唯一交点,这条抛物线的解析式可能是 (填“”或“”或“”或“”,其中;若二次函数及它的“孔像抛物线”与直线有且只有三个交点,求的值六、(本大题共12分)23(12分)(2021江西)课本再现(1)在证明“三角
10、形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与相等的角是 ;类比迁移(2)如图2,在四边形中,与互余,小明发现四边形中这对互余的角可类比(1)中思路进行拼合:先作,再过点作于点,连接,发现,之间的数量关系是 ;方法运用(3)如图3,在四边形中,连接,点是两边垂直平分线的交点,连接,求证:;连接,如图4,已知,求的长(用含,的式子表示)2021年江西省中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1(3分)(2021江西)的相反数是A2BCD【分析】根据相反数的意义,只有符号不同的两个数互为相反数【解答】解:根据相
11、反数的定义,的相反数是2故选:【点评】本题考查了相反数的意义注意掌握只有符号不同的两个数互为相反数,0的相反数是02(3分)(2021江西)如图,几何体的主视图是ABCD【分析】根据简单组合体的三视图的画法得出该组合体的主视图即可【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,因此选项中的图形符合题意,故选:【点评】本题考查简单组合体的三视图,理解视图的意义,掌握三视图的画法是正确判断的前提3(3分)(2021江西)计算的结果为A1BCD【分析】根据分式的加减运算法则即可求出答案【解答】解:原式,故选:【点评】本题考查分式的加减运算,解题的关键是熟练运用分式的运算
12、法则,本题属于基础题型4(3分)(2021江西)如图是2020年中国新能源汽车购买用户地区分布图,由图可知下列说法错误的是A一线城市购买新能源汽车的用户最多B二线城市购买新能源汽车用户达C三四线城市购买新能源汽车用户达到11万D四线城市以下购买新能源汽车用户最少【分析】根据扇形统计图中的数据一一分析即可判断【解答】解:、一线城市购买新能源汽车的用户最多,故本选项正确,不符合题意;、二线城市购买新能源汽车用户达,故本选项正确,不符合题意;、由扇形统计图中的数据不能得出三四线城市购买新能源汽车用户达到11万,故本选项错误,符合题意;、四线城市以下购买新能源汽车用户最少,故本选项正确,不符合题意;故
13、选:【点评】本题考查了扇形统计图关键是根据扇形统计图中的数据进行分析,解题时要细心5(3分)(2021江西)在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是ABCD【分析】根据二次函数与一次函数的图象,即可得出、,由此即可得出:二次函数的图象开口向上,对称轴,与轴的交点在轴负半轴,再对照四个选项中的图象即可得出结论【解答】解:观察函数图象可知:,二次函数的图象开口向上,对称轴,与轴的交点在轴负半轴故选:【点评】本题考查了一次函数的图象以及二次函数的图象,根据二次函数图象和一次函数图象经过的象限,找出、是解题的关键6(3分)(2021江西)如图是用七巧板拼接成的一
14、个轴对称图形(忽略拼接线)小亮改变的位置,将分别摆放在图中左,下,右的位置(摆放时无缝隙不重叠),还能拼接成不同轴对称图形的个数为A2B3C4D5【分析】能拼剪为等腰梯形,等腰直角三角形,矩形,由此即可判断【解答】解:观察图象可知,能拼接成不同轴对称图形的个数为3个故选:【点评】本题考查利用轴对称设计图案,解题的关键是理解轴对称图形的性质,属于中考常考题型二、填空题(本大题共6小题,每小题3分,共18分)7(3分)(2021江西)国务院第七次全国人口普查领导小组办公室5月11日发布,江西人口数约为45100000人,将45100000用科学记数法表示为【分析】科学记数法的表示形式为的形式,其中
15、,为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同当原数绝对值时,是正数;当原数的绝对值时,是负数【解答】解:,故答案为:【点评】此题主要考查了科学记数法的表示方法科学记数法的表示形式为的的形式,其中,为整数,表示时关键要正确确定的值以及的值8(3分)(2021江西)因式分解:【分析】直接运用平方差公式进行因式分解【解答】解:【点评】本题考查了平方差公式分解因式,熟记公式结构是解题的关键平方差公式:9(3分)(2021江西)已知,是一元二次方程的两根,则1【分析】直接根据根与系数的关系得出、的值,再代入计算即可【解答】解:,是一元二次方程的两根,则故答案是
16、:1【点评】本题考查了一元二次方程的根与系数的关系,关键是掌握,是一元二次方程的两根时,10(3分)(2021江西)如表在我国宋朝数学家杨辉1261年的著作详解九章算法中提到过,因而人们把这个表叫做杨辉三角,请你根据杨辉三角的规律补全表第四行空缺的数字是 3【分析】根据表中的数据和数据的变化特点,可以发现:每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,然后即可写出第四行空缺的数字【解答】解:由表可知,每一行中间的数字都等于这个数字上一行左上角和右上角的数字之和,故第四行空缺的数字是,故答案为:3【点评】本题考查数字的变化类,解答本题的关键是发现数字的变化特点,写出相应的数字11
17、(3分)(2021江西)如图,将沿对角线翻折,点落在点处,交于点,若,则的周长为 【分析】由,四边形为平行四边形,折叠的性质可证明为等腰三角形所以设,则,在中,由三角形内角和定理可知,解得,由外角定理可证明为等腰三角形所以故平行四边形的周长为【解答】解:,四边形为平行四边形由折叠可知,又,为等腰三角形设,则,在中,由三角形内角和定理可知,解得:由三角形外角定理可得,故为等腰三角形,故平行四边形的周长为故答案为:【点评】本题考查了平行四边形的性质、三角形内角和定理、外角定理、图形的翻折变换,证明和为等腰三角形是解题关键12(3分)(2021江西)如图,在边长为的正六边形中,连接,其中点,分别为和
18、上的动点若以,为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为 9或10或18【分析】连接,则是等边三角形解直角三角形求出,可得结论当点在上,点在上时,求出等边三角形的边长的最大值,最小值,可得结论【解答】解:连接,则是等边三角形设交于六边形是正六边形,由对称性可知,,当点与重合,点与重合时,满足条件,的边长为18,如图,当点在上,点在上时,等边的边长的最大值为,最小值为9,的边长为整数时,边长为10或9,综上所述,等边的边长为9或10或18故答案为:9或10或18【点评】本题考查正多边形与圆,等边三角形的判定和性质,解直角三角形等知识,解题的关键是判断出是等边三角形,属于中考
19、常考题型三、(本大题共5小题,每小题6分,共30分)13(6分)(2021江西)(1)计算:;(2)如图,在中,平分交于点,于点,求证:【分析】根据乘方的意义、零指数幂和绝对值的意义计算;(2)先证明得到为等腰三角形,然后根据等腰三角形的性质得到结论【解答】(1)解:原式;证明:平分交于点,为等腰三角形,【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等也考查了等腰三角形的判断与性质和实数的运算14(6分)(2021江西)解不等式组:并将解集在数轴上表示出来【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【解
20、答】解:解不等式,得:,解不等式,得:,则不等式组的解集为,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键15(6分)(2021江西)为庆祝建党100周年,某大学组织志愿者周末到社区进行党史学习宣讲,决定从,四名志愿者中通过抽签的方式确定两名志愿者参加抽签规则:将四名志愿者的名字分别写在四张完全相同不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字(1)“志愿者被选中”是随
21、机事件(填“随机”或“不可能”或“必然” ;(2)请你用列表法或画树状图法表示出这次抽签所有可能的结果,并求出,两名志愿者被选中的概率【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)列表得出所有等可能结果数,再从中找到符合条件的结果数,继而利用概率公式求解即可【解答】解:(1)“志愿者被选中”是随机事件,故答案为:随机;(2)列表如下:由表可知,共有12种等可能结果,其中,两名志愿者被选中的有2种结果,所以,两名志愿者被选中的概率为【点评】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的
22、事件用到的知识点为:概率所求情况数与总情况数之比16(6分)(2021江西)已知正方形的边长为4个单位长度,点是的中点,请仅用无刻度直尺按下列要求作图(保留作图痕迹)(1)在图1中,将直线绕着正方形的中心顺时针旋转;(2)在图2中,将直线向上平移1个单位长度【分析】(1)根据正方形的性质和旋转的性质即可作出图形;(2)根据平移的性质即可作出图形【解答】解:(1)如图1,直线即为所求;(2)如图2中,直线即为所求【点评】本题考查了作图旋转变换,作图平移变换,正方形的性质,解决本题的关键是掌握旋转的性质和平移的性质17(6分)(2021江西)如图,正比例函数的图象与反比例函数的图象交于点在中,点坐
23、标为(1)求的值;(2)求所在直线的解析式【分析】先求得的坐标,然后根据待定系数法即可求得的值;(2)作轴于,轴于,通过证得,求得,然后根据待定系数法即可求得直线的解析式【解答】解:(1)正比例函数的图象经过点,,点在反比例函数的图象上,;作轴于,轴于,,,在和中,,设直线的解析式为,解得,直线的解析式为【点评】本题是反比例函数与一次函数的交点问题,考查了一次函数图象上点的坐标特征,待定系数法求一次函数的解析式,全等三角形的判定和性质,求得的坐标是解题的关键四、(本大题共3小题,每小题8分,共24分)18(8分)(2021江西)甲,乙两人去市场采购相同价格的同一种商品,甲用2400元购买的商品
24、数量比乙用3000元购买的商品数量少10件(1)求这种商品的单价;(2)甲,乙两人第二次再去采购该商品时,单价比上次少了20元件,甲购买商品的总价与上次相同,乙购买商品的数量与上次相同,则甲两次购买这种商品的平均单价是 48元件,乙两次购买这种商品的平均单价是 元件(3)生活中,无论油价如何变化,有人总按相同金额加油,有人总按相同油量加油,结合(2)的计算结果,建议按相同 加油更合算(填“金额”或“油量” 【分析】设这种商品的单价为元件根据“甲用2400元购买的商品数量比乙用3000元购买的商品数量少10件”找到相等关系,列出方程,解出方程即可得出答案;先计算出第二次购买该商品时甲购买的数量和
25、乙购买的总价,再用两次总价和除以两次的数量和即可得出两次的平均单价;(3)通过比较(2)的计算结果即可得出答案【解答】解:设这种商品的单价为元件由题意得:,解得:,经检验:是原方程的根答:这种商品的单价为60元件(2)解:第二次购买该商品时的单价为:(元件),第二次购买该商品时甲购买的件数为:(件,第二次购买该商品时乙购买的总价为:(元,甲两次购买这种商品的平均单价是:(元件),乙两次购买这种商品的平均单价是:(元件)故答案为:48;50(3)解:,按相同金额加油更合算故答案为:金额【点评】本题考查了方式方程的应用,找到题目中的相等关系是解决问题的关键,计算平均单价的关键是能够正确的得出总价和
26、数量,再思考从特殊到一般的规律19(8分)(2021江西)为了提高农副产品的国际竞争力,我国一些行业协会对农副产品的规格进行了划分某外贸公司要出口一批规格为的鸡腿,现有两个厂家提供货源,它们的价格相同,鸡腿的品质相近质检员分别从两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:如下:甲厂:76,74,74,76,73,76,76,77,78,74,76,70,76,76,73,70,77,79,78,71;乙厂:75,76,77,77,78,77,76,71,74,75,79,71,72,74,73,74,70,79,75,77甲厂鸡腿质量频数统计表质量频数频率20.130.151050.2
27、5合计201分析上述数据,得到下表:统计量厂家平均数中位数众数方差甲厂75766.3乙厂7575776.6请你根据图表中的信息完成下列问题:(1)0.5,;(2)补全频数分布直方图;(3)如果只考虑出口鸡腿规格,请结合表中的某个统计量,为外贸公司选购鸡腿提供参考建议;(4)某外贸公司从甲厂采购了20000只鸡腿,并将质量(单位:在的鸡腿加工成优等品,请估计可以加工成优等品的鸡腿有多少只?【分析】(1)根据频数、频率、总数之间的关系可求出的值,根据众数的意义可求出的值;(2)求出乙厂鸡腿质量在的频数,即可补全频数分布直方图;(3)根据中位数、众数、平均数综合进行判断即可;(4)求出甲厂鸡腿质量在
28、的鸡腿数量所占的百分比即可【解答】解:(1)(个,甲厂鸡腿质量出现次数最多的是,因此众数是76,即,故答案为:0.5,76;(2)(个,补全频数分布直方图如下:(3)两个厂的平均数相同,都是,而甲厂的中位数、众数都是,接近平均数且方差较小,数据的比较稳定,因此选择甲厂;(4)(只,答:从甲厂采购了20000只鸡腿中,可以加工成优等品的大约有3000只【点评】本题考查频数分布表、频数分布直方图,掌握频数、频率、总数之间的关系是解决问题的前提20(8分)(2021江西)图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄与手臂始终在同一直线上,枪身与额头保持垂直量得胳
29、膊,肘关节与枪身端点之间的水平宽度为(即的长度),枪身(1)求的度数;(2)测温时规定枪身端点与额头距离范围为在图2中,若测得,小红与测温员之间距离为问此时枪身端点与小红额头的距离是否在规定范围内?并说明理由(结果保留小数点后一位)(参考数据:,【分析】(1)过点作,垂足为,根据解直角三角形,即可计算出的度数,再根据平行线的性质即可算出的度数;(2)根据(1)中的结论和已知条件可计算出的度数,根据三角函数即可算出的长度,再根据已知条件即可算出的长度,即可得出答案【解答】解:(1)过点作,垂足为,过点作,垂足为,过点作,垂足为,在中,;(2),此时枪身端点与小红额头的距离是在规定范围内【点评】本
30、题主要考查了解直角三角形的应用,熟练掌握解直角三角形的方法进行计算是解决本题的关键五、(本大题共2小题,每小题9分,共18分)21(9分)(2021江西)如图1,四边形内接于,为直径,点作于点,连接(1)求证:;(2)若是的切线,连接,如图2请判断四边形的形状,并说明理由;当时,求,与围成阴影部分的面积【分析】(1)先判断出,再用等角的余角相等,即可得出结论;(2)先判断出,再判断出,进而得出四边形是平行四边形,即可得出结论;先求出,再用面积的和,即可得出结论【解答】(1)证明:四边形是的内接四边形,为的直径,;四边形是菱形,理由:,是的切线,由(1)知,四边形是平行四边形,是菱形;由知,四边
31、形是菱形,由知,在中,与围成阴影部分的面积为【点评】此题是圆的综合题,主要考查了同角的余角相等,切线的性质,菱形的判定,扇形的面积公式,判断出是解本题的关键22(9分)(2021江西)二次函数的图象交轴于原点及点感知特例(1)当时,如图1,抛物线上的点,分别关于点中心对称的点为,如表:2,补全表格;在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为形成概念我们发现形如(1)中的图象上的点和抛物线上的点关于点中心对称,则称是的“孔像抛物线”例如,当时,图2中的抛物线是抛物线的“孔像抛物线”探究问题(2)当时,若抛物线与它的“孔像抛物线” 的函数值都随着的增大而减小,则的取值范
32、围为 ;在同一平面直角坐标系中,当取不同值时,通过画图发现存在一条抛物线与二次函数的所有“孔像抛物线” 都有唯一交点,这条抛物线的解析式可能是 (填“”或“”或“”或“”,其中;若二次函数及它的“孔像抛物线”与直线有且只有三个交点,求的值【分析】(1)根据中点公式即可求得答案;根据题意先描点,再用平滑的曲线从左到右依次连接即可;(2)当时,抛物线,当时,的函数值随着的增大而减小,抛物线,当时,的函数值随着的增大而减小,找出公共部分即可;先观察图1和图2,可以看出随着的变化,二次函数的所有“孔像抛物线” ,顶点坐标为,顶点在抛物线上,根据这条抛物线与二次函数的所有“孔像抛物线” 都有唯一交点,可
33、知这条抛物线顶点为原点,即;观察图1和图2,可知直线与抛物线及“孔像抛物线” 有且只有三个交点,即直线经过抛物线的顶点或经过抛物线的顶点或经过公共点,分别建立方程求解即可【解答】解:(1)、关于点中心对称,点为的中点,设点,故答案为:;所画图象如图1所示,(2)当时,抛物线,对称轴为直线,开口向上,当时,的函数值随着的增大而减小,抛物线,对称轴为直线,开口向下,当时,的函数值随着的增大而减小,当时,抛物线与它的“孔像抛物线” 的函数值都随着的增大而减小,故答案为:;通过观察图1和图2,抛物线的“孔像抛物线” ,顶点坐标为,顶点在抛物线上,与二次函数的所有“孔像抛物线” 都有唯一交点的抛物线一定
34、满足顶点在原点,开口向上;这条抛物线的解析式为,故答案为:;抛物线,顶点坐标为,其“孔像抛物线” 为:,顶点坐标为,抛物线与其“孔像抛物线” 有一个公共点,二次函数及它的“孔像抛物线”与直线有且只有三个交点时,有三种情况:直线经过,解得:或(舍去),直线经过,解得:或 (舍去),直线经过,但当时,与只有一个交点,不符合题意,舍去,综上所述,【点评】本题是关于二次函数综合题,主要考查了二次函数图象和性质,中心对称性质及应用,二次函数与一元二次方程的关系,一元二次方程根的判别式,新定义理解及应用等,解题关键是理解题意,运用数形结合思想和分类讨论思想、方程思想思考解决问题六、(本大题共12分)23(
35、12分)(2021江西)课本再现(1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与相等的角是 ;类比迁移(2)如图2,在四边形中,与互余,小明发现四边形中这对互余的角可类比(1)中思路进行拼合:先作,再过点作于点,连接,发现,之间的数量关系是 ;方法运用(3)如图3,在四边形中,连接,点是两边垂直平分线的交点,连接,求证:;连接,如图4,已知,求的长(用含,的式子表示)【分析】根据图形的拼剪可得结论(2)利用勾股定理解决问题即可(3)如图3中,连接,作的外接圆利用圆周角定理以及三角形内角和定理,即可解决问题如图4中,在射线的下方作,过点作于利用相似三角形的性质证明,求出,可得结论【解答】(1)解:如图1中,由图形的拼剪可知,,故答案为:(2)解:如图2中,,故答案为:(3)证明:如图3中,连接,作的外接圆点是两边垂直平分线的交点点是的外心,,解:如图4中,在射线的下方作,过点作于,【点评】本题属于四边形综合题,考查了三角形的外心,勾股定理,相似三角形的判定和性质,圆周角定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题