教育专题:22y=ax2的图象和性质.ppt

上传人:s****8 文档编号:78014415 上传时间:2023-03-16 格式:PPT 页数:20 大小:1.49MB
返回 下载 相关 举报
教育专题:22y=ax2的图象和性质.ppt_第1页
第1页 / 共20页
教育专题:22y=ax2的图象和性质.ppt_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《教育专题:22y=ax2的图象和性质.ppt》由会员分享,可在线阅读,更多相关《教育专题:22y=ax2的图象和性质.ppt(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、xy0yx0结识抛物线 -y=axy=ax2 2的图象和性质的图象和性质你想直观地了解它的性质吗你想直观地了解它的性质吗?数形结合,直观感受在二次函数在二次函数y=y=x x2 2中中,y,y随随x x的变化而变化的规律的变化而变化的规律是什么?是什么?有的放矢有的放矢w观察观察y=y=x x2 2的表达式的表达式,选择适当选择适当x x值值,并计算相应并计算相应的的y y值值,完成下表:完成下表:w你会用描点法画二次函数y=y=x x2 2的图象吗的图象吗?xy=x x2 2x-3-2-10123y=x x2 2xy=x x2 29 94 41 10 01 14 49 9xy0 0-4-3-

2、2-11234108642-21描点描点,连线连线y=x2 2?x-3-3-2-2-1-1 0 01 12 23 3 y=x x2 29 94 41 10 01 14 49 9这条抛物线关于这条抛物线关于y轴对称轴对称,y轴就轴就 是它的对称轴是它的对称轴.对称轴与抛物对称轴与抛物线的交点叫做线的交点叫做抛物线的顶点抛物线的顶点.二次函数二次函数y=x2的的图象形如物体抛射图象形如物体抛射时所经过的路线时所经过的路线,我我们把它叫做们把它叫做抛物线抛物线.w(1)(1)你能描述图象的形状吗你能描述图象的形状吗?w(2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点.w(3)图

3、象 与x轴有交点吗?如果有,交点坐标是什么?当当x0(在对称轴的在对称轴的右侧右侧)时时,y随着随着x的增大而的增大而增大增大.当当x=-2时,时,y=4当当x=-1时,时,y=1当当x=1时,时,y=1当当x=2时,时,y=4抛物线抛物线y=x2在在x轴的轴的上方上方(除顶点外除顶点外),顶点顶点是它的最低点是它的最低点,开口开口向上向上,并且向上无限并且向上无限伸展伸展;当当x=0时时,函数函数y的值最小的值最小,最小值是最小值是0.w(4)当x0呢?w(5)当当x取什么值时取什么值时,y的值最小的值最小?最小值是什么?最小值是什么?在学中做在做中学w画二次函数二次函数y=-y=-x x2

4、 2的图象的图象 做一做做一做xy=-x x2 2x-3-2-10123y=-x x2 2x-9-9-4-4-1-10 0-1-1-4-4-9-9做做一做一做xy0 0-4-3-2-11234-10-8-6-4-22-1描点描点,连线连线y=-=-x2 2?这条抛物线关于这条抛物线关于y轴对称轴对称,y轴就轴就 是它的对称轴是它的对称轴.对称轴与抛物对称轴与抛物线的交点叫做线的交点叫做抛物线的顶点抛物线的顶点.二次函数二次函数y=-x2的的图象形如物体抛射图象形如物体抛射时所经过的路线时所经过的路线,我我们把它叫做们把它叫做抛物线抛物线.y(1)1)你能描述图象的形状吗你能描述图象的形状吗?(

5、2)图象是轴对称图形吗?如果是图象是轴对称图形吗?如果是,它的对称轴是什么它的对称轴是什么?请请你找出几对对称点你找出几对对称点.当当x0(在对称轴在对称轴的右侧的右侧)时时,y随着随着x的增大而减小的增大而减小.y 当当x=-2时时,y=-4 当当x=-1时时,y=-1当当x=1时时,y=-1当当x=2时时,y=-4抛物线抛物线y=-x2在在x轴的轴的下方下方(除顶点外除顶点外),顶点顶点是它的最高点是它的最高点,开口开口向下向下,并且向下无限并且向下无限伸展伸展;当当x=0时时,函数函数y的值最大的值最大,最大值是最大值是0.(3)当x0呢?(4)当x取什么值时,y的值最大?最大值是什么?

6、你是如何知道的?二次函数二次函数y=ax2的性质的性质.顶点坐标与对称轴顶点坐标与对称轴.位置与开口方向位置与开口方向.增减性与最值增减性与最值抛物线抛物线顶点坐标顶点坐标对称轴对称轴位置位置开口方向开口方向增减性增减性最值最值y=x2y=-x2(0,0)(0,0)y轴轴y轴轴在在x轴的上方轴的上方(除顶点外除顶点外)在在x轴的下方轴的下方(除顶点外除顶点外)向上向上向下向下当当x=0时时,最小值为最小值为0.当当x=0时时,最大值为最大值为0.在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小的增大而减小.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而增的增大而增大大.在对称轴的左侧

7、在对称轴的左侧,y随着随着x的增大而增大的增大而增大.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而减的增大而减小小.根据图形填表:根据图形填表:wy=x2的图象的图象y=-x2图象图象有什么有什么关系?关系?函数函数y=ay=ax x2 2(a0)(a0)的图象和性质的图象和性质w在同一坐标系中作二次函数在同一坐标系中作二次函数y=xy=x2 2和和y=2xy=2x2 2的图象的图象 做一做做一做w(1)完成下表:w(2)分别作出y=xy=x2 2和和y=2x2的图象 xy=x x2 2y=2x x2 2x-3-2-10123y=x x2 2y=2x x2 2x 9 94 41 10 0

8、1 14 49 9x 18188 82 20 02 28 81818二次项系数二次项系数a0,开口都向上开口都向上;对对称轴都是称轴都是y轴轴;增减性与也相同增减性与也相同.顶点都是顶点都是原点原点(0,0).二次函数二次函数y=2x2的的图象形状与图象形状与y=x2一样一样,仍是仍是抛物线抛物线.w(3)二次函数二次函数y=2x2的图象的图象是什么形状是什么形状?它与二次函数它与二次函数y=x2的图象有什么相同和的图象有什么相同和不同不同?它的开口方向、对称它的开口方向、对称轴和顶点坐标分别是什么轴和顶点坐标分别是什么?只是开口只是开口大小不同大小不同.w想一想想一想,在同一坐标系中作二次函

9、数在同一坐标系中作二次函数y=-xy=-x2 2和和y=-y=-2x2x2 2的图象的图象,会是什么样会是什么样?二次项系数二次项系数a0)y=ax2(a0)(0,0)(0,0)y轴轴y轴轴在在x轴的上方轴的上方(除顶点外除顶点外)在在x轴的下方轴的下方(除顶点外除顶点外)向上向上向下向下当当x=0时时,最小值为最小值为0.当当x=0时时,最大值为最大值为0.在对称轴的左侧在对称轴的左侧,y随着随着x的增大而减小的增大而减小.在对称轴的右侧在对称轴的右侧,y随着随着x的增大而增的增大而增大大.在对称轴的左侧在对称轴的左侧,y随着随着x的增大而增大的增大而增大.在对称轴的右侧在对称轴的右侧,y随

10、着随着x的增大而减的增大而减小小.根据图形填表:根据图形填表:越小越小,开口越大开口越大.越大越大,开口越小开口越小.知道就做别客气例题欣赏例题欣赏w1.1.填空填空:(1)抛物线抛物线y=3x2的顶点坐标是的顶点坐标是 ,对称轴是对称轴是 ,在在 侧侧,y随着随着x的增大而增大;在的增大而增大;在 侧侧,y随着随着x的增大而减小的增大而减小,当当x=时时,函数函数y的值最小的值最小,最小值是最小值是 ,抛物线抛物线y=3x2在在x轴的轴的 方方(除顶点外除顶点外).w(2)抛物线抛物线 在在x轴的轴的 方方(除顶点外除顶点外),在对称轴的在对称轴的左侧左侧,y随着随着x的的 ;在对称轴的右侧

11、;在对称轴的右侧,y随着随着x的的 ,当当x=0时时,函数函数y的值最大的值最大,最大值是最大值是 ,当当x 0时时,y0时时,抛物线抛物线y=ax2在在x轴的上方(除顶点外)轴的上方(除顶点外),它的开口它的开口向上向上,并且向上无限伸展;并且向上无限伸展;当当a0时时,在对称轴的左侧在对称轴的左侧,y随着随着x的增的增大而减小;大而减小;在对称轴右侧在对称轴右侧,y随着随着x的增大而增大的增大而增大.当当x=0时函数时函数y的值最小的值最小.当当a0时时,在对称轴的左侧在对称轴的左侧,y随着随着x的增的增大而增大;大而增大;在对称轴的右侧在对称轴的右侧,y随着随着x增大而减小增大而减小,当当x=0时时,函数函数y的值最大的值最大.小结 拓展w1.抛物线抛物线y=ax2的顶点是原点的顶点是原点,对称轴是对称轴是y轴轴.n由二次函数y=y=x x2 2和和y=-y=-x x2 2知:结束寄语只有不断的思考只有不断的思考,才会才会有新的发现有新的发现;只有量的只有量的变化变化,才会有质的进步才会有质的进步.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁