《低速翼型的气动特性.pptx》由会员分享,可在线阅读,更多相关《低速翼型的气动特性.pptx(99页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、5.1 5.1 翼型的几何参数及表示方法翼型的几何参数及表示方法5.1.1 翼型的几何参数5.1.2 NACA翼型5.1.3 NACA五位数5.1.4 层流翼型5.1.5 超临界机翼 第1页/共99页5.1.1 翼型的几何参数翼的横剖面形状,又称为翼剖面。在空气动力学中,翼型通翼的横剖面形状,又称为翼剖面。在空气动力学中,翼型通常理解为二维机翼,即剖面形状不变的无限翼展机翼。常理解为二维机翼,即剖面形状不变的无限翼展机翼。第2页/共99页翼型按速度分类有翼型按速度分类有低速翼型低速翼型亚声速翼型亚声速翼型超声速翼型超声速翼型第3页/共99页翼型按形状分类有翼型按形状分类有圆头尖尾形圆头尖尾形尖
2、头尖尾形尖头尖尾形圆头钝尾形圆头钝尾形第4页/共99页几几何何弦弦长长、前前缘缘半半径径、后后缘缘角角;翼面坐标、弯度分布、厚度分布翼面坐标、弯度分布、厚度分布5.1.1 5.1.1 翼型的几何参数翼型的几何参数前缘厚度中弧线后缘弯度弦线弦长c 后缘角后缘角第5页/共99页厚度 5.1.1 5.1.1 翼型的几何参数翼型的几何参数弯度 第6页/共99页1.翼型的发展通常飞机设计要求,机翼和尾翼的升力尽可能大、阻力小。对于不同的飞行速度,机翼的翼型形状是不同的低亚声速飞机:圆头尖尾形 提高升力系数高亚声速飞机:超临界翼型 提高阻力发散Ma数,前缘丰满、上翼面平坦、下翼面后缘向内凹;超声速飞机:尖
3、头、尖尾形 减小激波阻力5.1.2 NACA5.1.2 NACA翼型翼型翼型翼型第7页/共99页对翼型的研究最早可追溯到19世纪后期带有一定安装角的平板能够产生升力在实践中发现弯板比平板好,能用于较大的迎角范围平板翼型效率较低,失速迎角很小平板翼型效率较低,失速迎角很小将头部弄弯以后的平板翼型,将头部弄弯以后的平板翼型,失速迎角有所增加失速迎角有所增加第8页/共99页鸟翼具有弯度和大展弦比的特征鸟翼具有弯度和大展弦比的特征鸟类的飞行研究:弯曲的平板更接近于鸟翼的形状能够产生更大的升力和效率。第9页/共99页德国人奥托利林塔尔设计并测试了许多曲线翼的滑翔机,他仔细测量了鸟翼的外形,认为试飞成功的
4、关键是机翼的曲率或者说是弯度,他还试验了不同的翼尖半径和厚度分布。第10页/共99页莱特兄弟所使用的翼型与利林塔尔的非常相似,薄而且弯度很大。这可能是因为早期的翼型试验都在极低的雷诺数下进行,薄翼型的表现要比厚翼型好。第11页/共99页随后的十多年里,在反复试验的基础上研制出了大量翼型,如RAF-6,Gottingen 387,Clark Y。这些翼型成为NACA翼型家族的鼻祖。第12页/共99页在上世纪三十年代初期,美国国家航空咨询委员会(National Advisory Committee for Aeronautics,NACA,National Aeronautics and Spa
5、ce Administration,NASA)对低速翼型进行了系统的实验研究。将当时的几种优秀翼型的厚度折算成相同厚度时,厚度分布规律几乎完全一样。在当时认为是最佳的翼型厚度分布作为NACA翼型族的厚度分布。厚度分布函数为:最大厚度为 第13页/共99页1932年,确定了NACA四位数翼型族。f为中弧线最高点的纵坐标,p 为最大弯度位置。中弧线取两段抛物线,在中弧线最高点二者相切。NACA 第14页/共99页1935年,NACA又确定了五位数翼型族。五位数翼族的厚度分布与四位数翼型相同。不同的是中弧线。它的中弧线前段是三次代数式,后段是一次代数式。例:NACACL设:来流与前缘中弧线平行时的理
6、论升力系数中弧线0:简单型1:有拐点第15页/共99页1939年,发展了NACA1系列层流翼型族。其后又相继发展了NACA2系列,3系列直到6系列,7系列的层流翼型族。层流翼型是为了减小湍流摩擦阻力而设计的,尽量使上翼面的顺压梯度区增大,减小逆压梯度区,减小湍流范围。第16页/共99页1967年美国NASA兰利研究中心的Whitcomb主要为了提高亚声速运输机阻力发散Ma数而提出了超临界翼型的概念。层流翼型超临界翼型第17页/共99页5.2 翼型的气动参数1、翼型的迎角与空气动力 翼型绕流视为平面流动,翼型上的空气动力简称气动力可视为无限翼展机翼在展向取单位展长所受的气动力。在翼型平面上,来流
7、V与翼弦线之间的夹角定义为翼型的几何迎角,简称迎角。对弦线而言,来流上偏为正,下偏为负。第18页/共99页第19页/共99页当气流绕过翼型时,在翼型表面上每点都作用有压强p(垂直于翼面)和摩擦切应力(与翼面相切),它们将产生一个合力R,合力的作用点称为压力中心,合力在来流方向的分量为阻力D,在垂直于来流方向的分量为升力L。第20页/共99页升力和阻力的比值l/d 称为升阻比其值随迎角的变化而变化,此值愈大愈好,低速和亚声速飞机可达1718,跨声速飞机可达1012,马赫数为2的超声速飞机约为48。把升力和阻力分别除以来流动压头与弦长,就得到升力系数cl和阻力系数cd第21页/共99页第22页/共
8、99页(1)在升力系数随迎角的变化曲线中,在迎角较小时是一条直线,这条直线的斜率称为升力线斜率,记为这个斜率,薄翼的理论值等于2/弧度如果迎角较大,流动出现分离。迎角大到一定程度,翼型上表面出现大面积分离。由于流动分离,使得升力系数开始下降的迎角称为最大升力迎角。对应的升力系数称为最大升力系数Clmax升力下降,意味着飞机可能下掉,失去飞行的正常速度。因此最大升力系数对应的迎角也称失速迎角。升力突然下降的现象称为失速。第23页/共99页(2)对于有弯度的翼型升力系数曲线是不通过原点的,通常把升力系数为零的迎角定义为零升迎角0,而过后缘点与几何弦线成0的直线称为零升力线。对有弯度翼型0是一个小负
9、数,一般弯度越大,0的绝对值越大。第24页/共99页(3)阻力 在二维情况下,主要是粘性引起的摩擦与压差阻力。在小迎角时,翼型的阻力主要是摩擦阻力,阻力系数随迎角变化不大;在迎角较大时,出现了压差阻力的增量,分离区扩及整个上翼面,阻力系数大增。但应指出的是无论摩擦阻力还是压差阻力都与粘性有关。第25页/共99页极曲线极曲线ClmaxCdminCdCl第26页/共99页翼面的气动力R与翼弦的交点称为压力中心。压力中心的位置和翼面上的压力具体分布情况有关系。当迎角增大时(未出现大分离以前),不仅上翼面的吸力和下翼面的压力都增强了,而且吸力峰前移,结果压力中心前移。2、压力中心,焦点,力矩第27页/
10、共99页翼型上的分布压力也可以分解成力和力矩,这个力矩称为俯仰力矩。升力和阻力都会引起力矩。阻力本身就比升力小一个量级,阻力的力臂比升力力臂也小不少,阻力对力矩的贡献是次要的。因此我们只考虑升力引起的力矩。压力中心的位置与迎角有关。迎角增加,压力中心可能前移,所以压力中心的使用很不方便。在翼型上,有一个特殊的点,称为气动中心,或焦点。不论迎角多大,如果每次都把力系搬到焦点上,其俯仰力矩都一样大。迎角增大,升力增大,压力中心前移,压力中心至气动中心的距离缩短,结果力乘力臂的积,即俯仰力矩保持不变。这一点的理论位置,薄翼型在距前缘14弦长处。第28页/共99页俯仰力矩系数记为Cm,定义是规定抬头力
11、矩为正,低头力矩为负。由于相对焦点的力矩与迎角无关,在失速迎角以下,基本是直线。迎角小到使升力为0时,力矩也是同样大小。升力为0时,对于一般翼型,零升力矩一般为负(低头力矩)。但当迎角超过失速迎角,翼型上有很显著的分离之后,低头力矩大增,力矩曲线也变弯曲。第29页/共99页俯仰力矩系数是翼型的重要气动参数之一,为了不使飞机出现俯仰翻滚,需要采用平尾产生升力来平衡力矩。由于平尾放在机尾上,距离重心很远即力臂很大,所以小平尾(小升力)就可以产生足够的平衡力矩。第30页/共99页(a)00迎角绕迎角绕流流(b)50迎角绕流迎角绕流翼型绕流图画5.5.3 3 低速翼型的流动特点低速翼型的流动特点第31
12、页/共99页低速翼型绕流图画低速圆头翼型在小迎角时,其绕流图画如下图示。总体流动特点是(1)整个绕翼型的流动是无分离的附着流动,在物面上的边界层和翼型后缘的尾迹区很薄;第32页/共99页(2)前驻点位于下翼面距前缘点不远处,流经驻点的流线分成两部分,一部分从驻点起绕过前缘点经上翼面顺壁面流去,另一部分从驻点起经下翼面顺壁面流去,在后缘处流动平滑地汇合后下向流去。(3)在上翼面的流体速度从前驻点的零值很快加速到最大值,然后逐渐减速。根据Bernoulli方程,压力分布是在驻点处压力最大,在最大速度点处压力最小,然后压力逐渐增大(过了最小压力点为逆压梯度区)。(4)随着迎角的增大,驻点逐渐后移,最
13、大速度点越靠近前缘,最大速度值越大,上下翼面的压差越大,因而升力越大。第33页/共99页(5)气流到后缘处,从上下翼面平顺流出,因此后缘点不一定是后驻点。第34页/共99页随着迎角增大,翼型升力系数将出现最大,然后减小。这是气流绕过翼型时发生分离的结果。在一定迎角下,当低速气流绕过翼型时,过前驻点开始快速加速减压到最大速度点(顺压梯度区),然后开始减速增压到翼型后缘点处(逆压梯度区),随着迎角的增加,前驻点向后移动,气流绕前缘近区的吸力峰在增大,造成峰值点后的气流顶着逆压梯度向后流动越困难,气流的减速越严重。第35页/共99页这不仅促使边界层增厚,变成湍流,而且迎角大到一定程度以后,逆压梯度达
14、到一定数值后,气流就无力顶着逆压减速了,而发生分离。这时气流分成分离区内部的流动和分离区外部的主流两部分。123S5第36页/共99页根据大量实验,在大Re数下,翼型分离可根据其厚度不同分为以下三种分离形式:(1)后缘分离(湍流分离)这种厚翼型头部的负压不是特别大,分离是从翼型上翼面后缘近区开始的。随着迎角的增加,分离点逐渐向前缘发展。这种分离对应的翼型厚度大于12%-15%。第37页/共99页起初升力线斜率偏离直线,当迎角达到一定数值时,分离点发展到上翼面某一位置时(大约翼面的一半),升力系数达到最大,以后升力系数下降。后缘分离的发展是比较缓慢的,流谱的变化是连续的,失速区的升力曲线也变化缓
15、慢,失速特性好。第38页/共99页(2)前缘分离(前缘短泡分离)中等厚度的翼型(厚度6%-9%),前缘半径较小。气流绕前缘时负压很大,从而产生很大的逆压梯度,即使在不大迎角下,前缘附近发生层流边界层分离,此后边界层转捩成湍流,从外流中获取能量,然后再附到翼面上,由于翼型具有中等厚度,再附点相对靠前而形成分离短气泡。这种短气泡的存在对主流没有显著影响,压强分布与无气泡时基本一样。第39页/共99页起初这种短气泡很短,只有弦长的1%,当迎角达到失速角时,短气泡突然破裂变成很长的气泡,或者气流不能再附,导致上翼面突然完全分离,使升力和力矩突然变化。第40页/共99页(3)薄翼分离(前缘长气泡分离)薄
16、的翼型(厚度4%-6%),前缘半径更小。气流绕前缘时负压更大,从而产生很大的逆压梯度,即使在不大迎角下,前缘附近引起层流边界层分离,此后层流边界层转捩成湍流,从外流中获取能量,流动一段较长距离后再附到翼面上,由于翼型很薄再附点相对靠后,形成长分离气泡。出现长气泡分离时对翼面压强分布有明显影响。第41页/共99页起初这种气泡不长,只有弦长的2%-3%,随着迎角增加,再附点不断向下游移动,当到失速迎角时,气泡延伸到后缘,翼型完全失速,气泡消失,气流不能再附,导致上翼面完全分离。由于这种分离是由薄翼型较早出现的短气泡逐步过渡到长气泡再直至分离,其升力系数曲线偏离直线较早,CLmax也较低但失速特性好
17、。第42页/共99页三种厚度翼型对应的三种分离以及升力系数曲线比较见下图。另外,除上述三种分离外,还可能存在混合分离形式,气流绕弯度大的薄翼型可能同时在前缘和后缘发生分离。(厚翼型)(薄翼型)(中等厚度翼型)第43页/共99页库塔(MW.Kutta,1867-1944),德国数学家 儒可夫斯基(Joukowski,18471921),俄国数学家和空气动力学家。1906年儒可夫斯基引入了环量的概念,发表了著名的升力定理,奠定了二维机翼理论的基础。5.5.4 4 库塔库塔儒可夫斯基后缘条件和环量确定儒可夫斯基后缘条件和环量确定第44页/共99页根据库塔一儒可夫斯基升力定理,在定常、理想、不可压流中
18、,直匀流流过任意截面形状翼型的升力为所以对给定的和v值,只要确定了给定迎角和几何外形翼型的环量值,根据升力定理即可求出作用在翼型上的升力。第45页/共99页但对于一定迎角下的给定翼型绕流,是否类似存在着:绕翼型的环量也可以不同,且前后驻点的位置也可随环量不同而改变,并且都可以满足翼面是流线的要求?对于不同的环量值,除升力大小不同外,绕流在圆柱上的前后驻点位置不同 ,并都可满足柱面是流线的要求:第46页/共99页对于给定的翼型,在一定的迎角下,升力是唯一确定的。这说明对于实际的翼型绕流,仅存在一个确定的绕翼型环量值,其它均是不正确的。要确定这个环量值,可以从绕流图画入手分析。当不同的环量值绕过翼
19、型时,其后驻点可能位于上翼面、下翼面和后缘点三个位置的流动图画。第47页/共99页就无粘位流而言,给定来流流速、迎角和翼型时,下面三就无粘位流而言,给定来流流速、迎角和翼型时,下面三种绕流情形都是可能的:种绕流情形都是可能的:(a)后驻点在上翼面,有逆时针后缘绕流;后驻点在上翼面,有逆时针后缘绕流;(b)后驻点在下翼面,有顺时针后缘绕流;后驻点在下翼面,有顺时针后缘绕流;(c)后驻点在后缘,无后缘绕流。后驻点在后缘,无后缘绕流。这表明,如无其它物理要求,环量无法确定这表明,如无其它物理要求,环量无法确定。5.4.15.4.1库塔库塔儒可夫斯基后缘条件儒可夫斯基后缘条件第48页/共99页 后驻点
20、在翼面上而不在后缘时,绕尖后缘的流动流速后驻点在翼面上而不在后缘时,绕尖后缘的流动流速理论上无穷大、压强负无穷,物理上这是不可能的;只有理论上无穷大、压强负无穷,物理上这是不可能的;只有后驻点在后缘,不出现尖后缘绕流,上下翼面流动在后缘后驻点在后缘,不出现尖后缘绕流,上下翼面流动在后缘平顺汇合流向下游平顺汇合流向下游,后缘处流速为有限值,才合乎一般的物后缘处流速为有限值,才合乎一般的物理要求。此时理要求。此时,有唯一的速度环量值与之相对应有唯一的速度环量值与之相对应。再者,从翼型实际绕流形成过程来看,粘性的作用消除再者,从翼型实际绕流形成过程来看,粘性的作用消除了后缘绕流,上下翼面流动在后缘平
21、顺汇合流向下游,产了后缘绕流,上下翼面流动在后缘平顺汇合流向下游,产生了起动涡,使翼型绕流具有了明确的速度环量。生了起动涡,使翼型绕流具有了明确的速度环量。5.4.15.4.1库塔库塔儒可夫斯基后缘条件儒可夫斯基后缘条件第49页/共99页库塔库塔儒可夫斯基后缘条件儒可夫斯基后缘条件如下:如下:(1)对于给定的翼型和迎角,绕翼型的环量值应正好使流对于给定的翼型和迎角,绕翼型的环量值应正好使流动平滑地流过后缘去。动平滑地流过后缘去。(2)后缘角后缘角00,后缘点是后驻点,后缘点是后驻点 V后上后上=V后下后下=0;(3)后缘角后缘角=0,=0,后缘点处流速为有限值后缘点处流速为有限值,V后上后上=
22、V后下后下 5.4.15.4.1库塔库塔儒可夫斯基后缘条件儒可夫斯基后缘条件第50页/共99页真实翼型的后缘并不是尖角,往往是一个小圆弧。实际流动气流在上下翼面靠后很近的两点发生分离,分离区很小。VS上=VS下 p后上 =p后下确定了无粘位流理论涉及确定了无粘位流理论涉及的速度环量的唯一性,这的速度环量的唯一性,这是库塔是库塔儒可夫斯基后缘儒可夫斯基后缘条件的实质。条件的实质。第51页/共99页绕翼型无粘位流的升力问题,遵循儒可夫斯基升力定理。绕翼型无粘位流的升力问题,遵循儒可夫斯基升力定理。根据该定理,直均流流过任意截面形状翼型的升力:根据该定理,直均流流过任意截面形状翼型的升力:L=V 可
23、见,确定速度环量是关键。可见,确定速度环量是关键。小小迎迎角角下下,翼翼型型绕绕流流的的压压力力分分布布及及升升力力,与与绕绕翼翼型型的的无无粘粘位位 流流的的压压力力分分布布及及升升力力无无本本质质差差别别。因因此此,不不计计粘粘 性性作用,用绕翼型的无粘位流求解翼型压力分布及升力,是作用,用绕翼型的无粘位流求解翼型压力分布及升力,是合理的近似。合理的近似。5.4.2 5.4.2 环量的产生和后缘条件的关系环量的产生和后缘条件的关系第52页/共99页根据海姆霍兹旋涡定理,在理想流中,涡的强度不随时间变化,既不会增强,也不会削弱或消失。翼型都是从静止状态开始加速运动到定常状态,根据旋涡守衡定律
24、,翼型引起气流运动的速度环量应与静止状态一样处处为零,但库塔条件得出一个不为零的环量值,这是乎出现了矛盾。环量产生的物理原因如何?第53页/共99页翼面邻近的闭曲线(翼面邻近的闭曲线(L L1 1)上速度环量上速度环量1 1,离翼型足够远的闭曲线(离翼型足够远的闭曲线(L L)上速度环量上速度环量,翼型前缘、后缘点分别为翼型前缘、后缘点分别为A、B起动涡起动涡起动前的静止状态5.4.2 5.4.2 5.4.2 5.4.2 环量的产生和后缘条件的关系环量的产生和后缘条件的关系环量的产生和后缘条件的关系环量的产生和后缘条件的关系第54页/共99页翼型前后驻点分别为翼型前后驻点分别为O、O1 1起动
25、涡起动涡刚起动的极短时间内,粘性尚未起作用5.4.2 5.4.2 5.4.2 5.4.2 环量的产生和后缘条件的关系环量的产生和后缘条件的关系环量的产生和后缘条件的关系环量的产生和后缘条件的关系第55页/共99页后缘绕流在上翼面出现分离,产生逆时针旋涡,后驻点后缘绕流在上翼面出现分离,产生逆时针旋涡,后驻点O1移向后缘点移向后缘点B起动涡起动涡起动中,粘性起作用。5.4.2 5.4.2 5.4.2 5.4.2 环量的产生和后缘条件的关系环量的产生和后缘条件的关系环量的产生和后缘条件的关系环量的产生和后缘条件的关系第56页/共99页后驻点后驻点O1移至后缘点移至后缘点B时,后缘绕流分离形成的涡脱
26、离翼面流向下游,时,后缘绕流分离形成的涡脱离翼面流向下游,形成起动涡,后缘处上下翼面流动平顺汇合流向下游。形成起动涡,后缘处上下翼面流动平顺汇合流向下游。起动涡起动涡起动过程完结,翼型匀速前进5.4.2 5.4.2 5.4.2 5.4.2 环量的产生和后缘条件的关系环量的产生和后缘条件的关系环量的产生和后缘条件的关系环量的产生和后缘条件的关系第57页/共99页第58页/共99页由上述讨论可得出:(1)流体粘性和翼型的尖后缘是产生起动涡的物理原因。绕翼型的速度环量始终与起动涡环量大小相等、方向相反。(2)对于一定形状的翼型,只要给定绕流速度和迎角,就有一个固定的速度环量与之对应,确定的条件是库塔
27、条件。(3)如果速度和迎角发生变化,将重新调整速度环量,以保证气流绕过翼型时从后缘平滑汇合流出。(4)代表绕翼型环量的旋涡,始终附着在翼型上,称为附着涡。根据升力环量定律,直匀流加上一定强度的附着涡所产生的升力,与直匀流中一个有环量的翼型绕流完全一样。第59页/共99页5.5.5 5 薄翼型理论薄翼型理论理想不可压流体流过一个翼型,如果迎角不大,翼型的厚度和弯度也很小,流场是小扰动位流场,所以翼面上的边界条件以及压强系数可以线化,厚度、弯度和迎角的影响可以分开考虑。翼型的这种位流解法在空气动力学上称为薄翼型理论。第60页/共99页5.5.1 5.5.1 扰动速度位的线化方程扰动速度位的线化方程
28、采用体坐标轴采用体坐标轴Oxy,原点位于前缘点,原点位于前缘点,x轴沿翼弦向后,轴沿翼弦向后,y轴向上。轴向上。翼型低速无粘位流问题,一般可描述如下:翼型低速无粘位流问题,一般可描述如下:第61页/共99页翼型绕流速度位满足拉普拉斯方程,因此它可分解为直均来流速度位和翼型存在引起的扰动速度位,即于是,扰动速度位也满足拉普拉斯方程:因有(2)5.5.1 5.5.1 5.5.1 5.5.1 扰动速度位的线化方程扰动速度位的线化方程扰动速度位的线化方程扰动速度位的线化方程第62页/共99页体轴坐标系翼面上x、y方向的流速分量记为则边界条件为:将根据物面应是流线的边界条件,有(6)5.5.1 5.5.
29、1 扰动速度位的线化方程扰动速度位的线化方程因翼型薄,弯度和迎角小,即 视为一阶小量,则 为二阶小量;因此(5-12)(5-11)第63页/共99页将(5-12)中的 展开成如下级数,其中 也是二阶小量。保留一阶小量下,,考虑到翼面坐标与厚度、弯度分布的关系,上式可写为,(5-15)翼面边界条件线化近似翼面边界条件线化近似5.5.1 5.5.1 扰动速度位的线化方程扰动速度位的线化方程因此在薄翼型前提下,翼面上y方向的扰动速度可近似用弦线上的值代替方向的扰动速度可近似用弦线上的值代替。这就是翼面边界条件的线性化近似表达式。式(5-15)表示,在小扰动条在小扰动条件下件下 可近似表示为弯度、厚度
30、和迎角三部分的线性和。可近似表示为弯度、厚度和迎角三部分的线性和。第64页/共99页+迎角问题迎角问题弯板问题弯板问题厚度问题厚度问题_后缘条件后缘条件后缘条件扰动速度位的线性叠加扰动速度位的线性叠加5.5.1 5.5.1 扰动速度位的线化方程扰动速度位的线化方程第65页/共99页扰动速度位的线性叠加扰动速度位的线性叠加5.5.1 5.5.1 5.5.1 5.5.1 扰动速度位的线化方程扰动速度位的线化方程扰动速度位的线化方程扰动速度位的线化方程厚度问题因流动上下对称,不能产生升力和力矩。弯度和迎角问题则流动上下不对称,压差作用产生升力和力矩。弯度和迎角问题可合在一起处理,称为迎角弯度问题。第
31、66页/共99页根据伯努利方程,流场中任一点的压强系数为若只保留一阶小量,则有结果,对翼面上的压强系数进一步近似,则有 压强系数的线化近似压强系数的线化近似5.5.1 5.5.1 5.5.1 5.5.1 扰动速度位的线化方程扰动速度位的线化方程扰动速度位的线化方程扰动速度位的线化方程第67页/共99页在中弧线布涡模拟升力问题5.5.2 5.5.2 5.5.2 5.5.2 迎角弯度问题(升力问题)迎角弯度问题(升力问题)迎角弯度问题(升力问题)迎角弯度问题(升力问题)对于薄翼型问题,气动特性只依赖于中弧线与迎角的作用。升力的产生从本质上来源于绕中弧线有环量,可以使用一个变强度的涡面来代替中弧线,
32、并在物面上满足边界条件因为翼型的弯度一般很小,中弧线和弦线差别不大,因而在中弧线上布涡可近似用弦线上布涡来代替。第68页/共99页5.5.2 5.5.2 迎角弯板问题(升力问题)迎角弯板问题(升力问题)在一级近似条件下求解迎角弯度问题,或者说求薄翼型的升力和力矩问题,归结为在满足下列条件下求解沿弦线连续分布的涡强(s)(1)无穷远处的边界条件(2)物面边界条件(3)库塔儒可夫斯基后缘条件因涡面在无穷远处的扰动速度为零,所以无穷远边界条件自动满足,求解时只需考虑物面边界条件和后缘条件即可第69页/共99页5.5.2 5.5.2 迎角弯板问题(升力问题)迎角弯板问题(升力问题)弦线上某点布置单位长
33、度涡强为()的点涡,在d微段上的涡强为()d,即绕该微元段的环量为()d该微元段的环量对弦线任一点x处产生的诱导速度为迎角弯板的面涡模拟 第70页/共99页整个涡面在在弦线上诱导的y方向速度(即y方向的扰动速度)为 代入迎角弯度问题的物面边界条件得确定面涡强度()的积分方程 5.5.2 5.5.2 5.5.2 5.5.2 迎角弯板问题(升力问题)迎角弯板问题(升力问题)迎角弯板问题(升力问题)迎角弯板问题(升力问题)(5-23)(5-24)这就是确定分布函数()的积分方程。式(5-24)称为薄翼型理论的基本方程。确定()后,绕翼型总的环量为第71页/共99页为什么写成为什么写成这个样子?这个样
34、子?点涡强度()的三角级数解 变量变换:则积分方程(5-24)化为:将点涡强度()展成如傅立叶级数(易知该三角级数满足后缘条件)(5-26),5.5.3 5.5.3 5.5.3 5.5.3 基本方程的求解基本方程的求解基本方程的求解基本方程的求解其中,A0,A1,A2,是待定系数,只要解出各系数,即找到了符合条件的涡强分布。(1)第一项是为了表达前缘处无限大的负压(即无限大的流速)(2)在后缘处满足库塔条件第72页/共99页5.5.3 5.5.3 5.5.3 5.5.3 基本方程的求解基本方程的求解基本方程的求解基本方程的求解将上述级数代入积分方程,并利用三角函数半角公式与积化和差公式:积分方
35、程化为第73页/共99页利用如下广义积分公式(证明见附录):将积分方程各式积分出来得:为化简上式,再利用三角函数积化和差公式:5.5.3 5.5.3 基本方程的求解基本方程的求解第74页/共99页先将上式两边乘 d1 并求1 从0的积分得:积分方程化为:由于上述第二项积分等于零,解得 A0等于:说明只要知道迎角和弯度分布即可说明只要知道迎角和弯度分布即可求出涡强分布第一项系数求出涡强分布第一项系数A05.5.3 5.5.3 基本方程的求解基本方程的求解第75页/共99页再将(*)式两边分别乘 cosn1后,并求1 从 0积分得:其中左边第一项积分:5.5.3 5.5.3 基本方程的求解基本方程
36、的求解第二项积分仅当求和符号中下标与外部标号一致时才存在:第76页/共99页回代可得:在给定了弯度函数yf(x)和迎角之后可将全部系数解出。有了涡强分布()就不难求得迎角-弯度问题的气动特性。利用三角函数半角公式可将该积分求出:从而:5.5.3 5.5.3 基本方程的求解基本方程的求解第77页/共99页升力:5.5.4 5.5.4 5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性薄翼型的气动特性薄翼型的气动特性环量:第78页/共99页升力系数:其中:可见升力和升力系数只取决于涡强分布级数的前两项系数,代入系数A0、A1的表达得:5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第
37、79页/共99页升力线的斜率为上式说明,对于薄翼而言,升力线的斜率与翼型的形状无关。其中,0为翼型的零升力迎角,由翼型的中弧线形状决定,对于对称翼型0=0,在正弯度时是仅取决于弯度函数的小负数.5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第80页/共99页l是一条直线,其斜率为 2,截距为l0=-20。当几何迎角等于零升迎角时,翼型上有一条平行于来流v且通过后缘的直线,称为零升力线。定义绝对迎角为v与零升力线间的夹角,用a 表示,即:a-0,则5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第81页/共99页根据三角函数的积分性质,得俯仰力矩为俯仰力矩系数为力矩系数 对前缘
38、取矩(低头为负),得俯仰力矩为5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第82页/共99页将俯仰力矩系数作如下整理其中,Cm0为零升力矩系数,在正弯度时也是一个只取决于弯度函数的小负数:5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第83页/共99页Cm CL 也是一条直线,斜率1/4,截距为 Cm0。5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第84页/共99页翼型上空气动力合力的作用点称为压力中心,通过该点的力矩为零,参见左图。升力可以对翼型上任何点取矩(设抬头为正),对前缘的取矩记为mz,对1/4弦点的取矩记为m1/4,则根据力矩的分解原理有压力中心受
39、力压力中心受力向前缘简化向前缘简化向向c/4处简化处简化对c/4取矩:对前缘取矩:5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第85页/共99页将级数解带入上式,得到关于c/4点的力矩系数为5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第86页/共99页压力中心受力压力中心受力向前缘简化向前缘简化向向b/4处简化处简化这个式子里没有迎角,说明这个力矩是常数(不随迎角变),即使升力为零仍有此力矩,可以称为零升力矩或剩余力矩。只要对1/4弦点取矩,力矩都等于这个零升力矩。这说明1/4弦点就是薄翼型气动中心的位置,是薄翼型升力增量的作用点。5.5.4 5.5.4 薄翼型的气动特
40、性薄翼型的气动特性薄翼理论的优点是可用解析方法计算出翼型升力和力矩特性与迎角和中弧线弯度之间的关系,且与实验比较吻合。但薄翼理论不能精确描述翼面速度和压强分布。第87页/共99页压力中心位置5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性前缘力矩所以压力中心位置可写成第88页/共99页对于带有弯度的大部分翼型,可以保证A1-A20因此,压力中心一般在1/4弦长以后的地方。随着攻角增大,压力中心前移。5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第89页/共99页例 求有迎角平板翼型的气动特性。解:对平板5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性翼型产生的升力为故
41、有升力系数为第90页/共99页5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性前缘力矩系数对焦点的力矩系数压力中心的位置第91页/共99页FLtV直匀气流以小迎角流过平板翼型的流线谱和涡强(x)分布如图。平板翼型上的压强总是垂直于板面,压强合力Lt必定也垂直板面的,它在来流方向有一个分力 Ltsin,似应有阻力存在,但根据理想流理论,翼型阻力应为零。问题在于上面分析没有考虑前缘的绕流效应,或者说漏算了一个名为前缘吸力的力。5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第92页/共99页迎角时前驻点在下板面前缘后不远处,来流要绕过前缘从下板面流到上板面去。对于无厚度平板,因前缘
42、半径为零,前缘处速度无限大,根据伯努利方程该处压强趋于负无限大,而作用面积趋于零,从而沿板向产生一个有限大小的前缘吸力F,前缘吸力F 与Lt合成后正好得到与来流垂直的升力L,阻力为零(F与Lt 在流动方向投影代数和为零)。5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性第93页/共99页薄翼型的厚度问题,可在其弦线上布面源的方法求解。面源是平面的,故有 上式代入边界条件,得面源强度q(x)满足方程 于是,得翼面压强系数(15)厚度问题厚度问题5.5.4 5.5.4 5.5.4 5.5.4 薄翼型的气动特性薄翼型的气动特性薄翼型的气动特性薄翼型的气动特性第94页/共99页面源法大意面源法
43、大意 在翼型表面布面涡或面源并与直均流叠加也可求解翼型的气动特性。关键在于确定合适的面涡强度分布(s)或面源强度分布q(s)。这就要求(s)、q(s)满足物面边界条件,对涡强度分布(s)还要满足后缘条件。对一般翼型而言,用数值计算方法可以求得满足要求的涡强度分布(s)或面源强度分布q(s)。数值计算方法的大意是:将物面分割成数目足够多的有限小块,称为面元;每个面元就是一个强度待定的面涡或面源;每个面元上在选定的点上满足物面不可穿透条件这样的点称为控制点(对涡分布还应加上后缘条件),以此可以确定面元强度并计算出压强、升力和力矩特性。面源法面源法5.6 任意翼型位流解法第95页/共99页面源法示例
44、面源法示例 从下翼面后缘起,按逆时针方向,将翼面依次分成n个小段,每段用折线代替,其上布常值强度的面涡,强度为j(j=1:1:n),它们是待定的;每小段上选定控制点Pi(xi,yi),i=1:1:n,对它们提边界条件。第j个面涡在第i个控制点处的扰动速度位为所有面涡在i控制点处引起的扰动速度位为 相应的法向扰动速度为 任意翼型位流数值解法任意翼型位流数值解法面源法面源法(续)续)5.6 任意翼型位流解法第96页/共99页于是在第i控制点处的边界条件为式中i为来流与第i个面涡外法线的夹角。为满足后缘条件,应使下表面第一个控制点和上表面最后第n个控制点尽可能接 近后缘,相应地就要求这两个面涡很短。
45、后缘条件可近似表达成(16)(17)由方程组(16)和条件(17)可求出面涡强度值j。然后求得各控制点处的切向速度和压强系数任意翼型位流数值解法任意翼型位流数值解法面源法面源法(续)续)5.6 任意翼型位流解法第97页/共99页第5章 要点与基本要求1.了解翼型的几何参数定义,掌握中弧线、弯度、厚度函数定义及其与上下表面坐标关系;2.了解翼型的空气动力系数定义和意义;3.了解低速翼型的后缘分离、前缘分离和薄翼分离的区别及其对气动特性的影响;4.了解尖后缘产生起动涡的物理原因及其与库塔-儒可夫斯基后缘条件的关系;5.了解面源和面涡的基本特征;6.掌握薄翼型理论的基本思路、前提条件和解题方法;7.了解实用低速翼型的气动特性,掌握压心、焦点等概念及其关系。第98页/共99页感谢您的观看!第99页/共99页