《高二数学知识点总结大全2021.doc》由会员分享,可在线阅读,更多相关《高二数学知识点总结大全2021.doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、精品文档,助你起航,欢迎收藏和关注!高二数学知识点总结大全2021二数学知识点总结2021有哪些?马上要数学考试了,同学们复习好了吗?特别是上了高二的同学,高二数学难度大了不少,是不是觉得压力很大?一起来看看高二数学知识点总结2021,欢迎查阅! 高二数学随机事件的概率知识点总结 一、事件 1.在条件SS的必然事件. 2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件. 3.在条件SS的随机事件. 二、概率和频率 1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据. 2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA nA为事件
2、A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率. 3.对于给定的随机事件A,由于事件A发生的频率fn(A)P(A),P(A). 三、事件的关系与运算 四、概率的几个基本性质 1.概率的取值范围: 2.必然事件的概率P(E)=3.不可能事件的概率P(F)= 4.概率的加法公式: 如果事件A与事件B互斥,则P(AB)=P(A)+P(B). 5.对立事件的概率: 若事件A与事件B互为对立事件,则AB为必然事件.P(AB)=1,P(A)=1-P(B). 高二数学导数知识点总结 导数: 导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题) 1、导数的定义: 在点 处的导数记作 .
3、 2. 导数的几何物理意义:曲线 在点 处切线的斜率 k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0)切线斜率。V=s/(t) 表示即时速度。a=v/(t) 表示加速度。 3.常见函数的导数公式: ; ; ; ; ; ; 。 4.导数的四则运算法则: 5.导数的应用: (1)利用导数判断函数的单调性:设函数 在某个区间内可导,如果 ,那么 为增函数;如果 ,那么为减函数; 注意:如果已知 为减函数求字母取值范围,那么不等式 恒成立。 (2)求极值的步骤: 求导数 ; 求方程 的根; 列表:检验 在方程 根的左右的符号,如果左正右负,那么函数 在这个根处取得极大值;如果左负右正,那么
4、函数 在这个根处取得极小值; (3)求可导函数最大值与最小值的步骤: 求 的根; 把根与区间端点函数值比较,最大的为最大值,最小的是最小值。 高二数学知识点总结之排列与组合 排列组合公式/排列组合计算公式 排列P-和顺序有关 组合C-不牵涉到顺序的问题 排列分顺序,组合不分 例如把5本不同的书分给3个人,有几种分法. 排列 把5本书分给3个人,有几种分法 组合 1.排列及计算公式 从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,
5、m)表示. p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 c(n,m)表示. c(n,m)=p(n,m)/m!=n!/(n-m)!_m!);c(n,m)=c(n,n-m); 3.其他排列与组合公式 从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,.nk这n个元
6、素的全排列数为n!/(n1!_n2!_._nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标) Pnm=n(n-1).(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标) Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2008-07-0813:30 公式P是指排列,从N个元素取R个进行排列。公式C是指
7、组合,从N个元素取R个,不进行排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9_8_7_6_5_4_3_2_1 从N倒数r个,表达式应该为n_(n-1)_(n-2).(n-r+1); 因为从n到(n-r+1)个数为n-(n-r+1)=r 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9_8_7个
8、三位数。计算公式=P(3,9)=9_8_7,(从9倒数3个的乘积) Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”? A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。 上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9_8_7/3_2_1 排列、组合的概念和公式典型例题分析 例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同同方法? 解(1)由于
9、每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法. (2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法. 点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算. 例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种? 解依题意,符合要求的排法可分为第一个排、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出: 符合题意的不同排法共有9种. 点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一
10、种数学模型. 例3判断下列问题是排列问题还是组合问题?并计算出结果. (1)高三年级学生会有11人:每两人互通一封信,共通了多少封信?每两人互握了一次手,共握了多少次手? (2)高二年级数学课外小组共10人:从中选一名正组长和一名副组长,共有多少种不同的选法?从中选2名参加省数学竞赛,有多少种不同的选法? (3)有2,3,5,7,11,13,17,19八个质数:从中任取两个数求它们的商可以有多少种不同的商?从中任取两个求它的积,可以得到多少个不同的积? (4)有8盆花:从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?从中选出2盆放在教室有多少种不同的选法? 分析(1)由于每人互通一封信
11、,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析. (1)是排列问题,共用了封信;是组合问题,共需握手(次). (2)是排列问题,共有(种)不同的选法;是组合问题,共有种不同的选法. (3)是排列问题,共有种不同的商;是组合问题,共有种不同的积. (4)是排列问题,共有种不同的选法;是组合问题,共有种不同的选法. 例4证明. 证明左式 右式. 等式成立. 点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化. 例5化简. 解法一原式 解法二原式
12、 点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化. 例6解方程:(1);(2). 解(1)原方程 解得. (2)原方程可变为 , 原方程可化为. 即,解得 第六章排列组合、二项式定理 一、考纲要求 1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题. 2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题. 3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题. 二、知识结构 三、知识点、能力点提示 (一)加法原理乘法原理 说明加法原理、乘法原理是学习排列组
13、合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据. 高二数学任意角和弧度制知识点总结 在中国古代把数学叫算术,又称算学,最后才改为数学。 1.任意角 (1)角的分类: 按旋转方向不同分为正角、负角、零角. 按终边位置不同分为象限角和轴线角. (2)终边相同的角: 终边与角相同的角可写成+k360(kZ). (3)弧度制: 1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 规定:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零,|=,l是以角作为圆心角时所对圆弧的长,r为半径. 用弧度做单位来度量角的制度叫做弧度制.比值与所取的r的大小无关,仅与角的大小有关.
14、弧度与角度的换算:360弧度;180弧度. 弧长公式:l=|r,扇形面积公式:S扇形=lr=|r2. 2.任意角的三角函数 (1)任意角的三角函数定义: 设是一个任意角,角的终边与单位圆交于点P(x,y),那么角的正弦、余弦、正切分别是:sin =y,cos =x,tan =,它们都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (2)三角函数在各象限内的符号口诀是:一全正、二正弦、三正切、四余弦. 3.三角函数线 设角的顶点在坐标原点,始边与x轴非负半轴重合,终边与单位圆相交于点P,过P作PM垂直于x轴于M.由三角函数的定义知,点P的坐标为(cos_,sin_),即P(cos_,sin_),其中cos =OM,sin =MP,单位圆与x轴的正半轴交于点A,单位圆在A点的切线与的终边或其反向延长线相交于点T,则tan =AT.我们把有向线段OM、MP、AT叫做的余弦线、正弦线、正切线. 高二数学知识点总结2021