《高一数学函数模型的应用实例精选文档.ppt》由会员分享,可在线阅读,更多相关《高一数学函数模型的应用实例精选文档.ppt(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、高一数学函数模型的应用实例本讲稿第一页,共十八页1.1.一次函数的解析式为一次函数的解析式为_,_,其图像是一条其图像是一条_线,线,当当_时,一次函数在时,一次函数在 上为增函数,当上为增函数,当_时,时,一次函数在一次函数在 上为减函数。上为减函数。2.2.二次函数的解析式为二次函数的解析式为_,_,其图像是一条其图像是一条_线,当线,当_时,函数有最小值为时,函数有最小值为_,当,当_时,函数有最大值为时,函数有最大值为_。直直抛物抛物本讲稿第二页,共十八页问题某学生早上起床太晚,为避免迟到,某学生早上起床太晚,为避免迟到,不得不跑步到教室,但由于平时不注不得不跑步到教室,但由于平时不注
2、意锻炼身体,结果跑了一段就累了,意锻炼身体,结果跑了一段就累了,不得不走完余下的路程。不得不走完余下的路程。如果用纵轴表示家到教室的距离,横轴表示如果用纵轴表示家到教室的距离,横轴表示出发后的时间,则下列四个图象比较符合此出发后的时间,则下列四个图象比较符合此人走法的是()人走法的是()本讲稿第三页,共十八页0(A)0(B)0(D)0(C)本讲稿第四页,共十八页这个函数的图像如下图所示:这个函数的图像如下图所示:解解(1)(1)阴影部分的面积为阴影部分的面积为阴影部分的面积表示汽车在这阴影部分的面积表示汽车在这5 5小时内行驶的路程为小时内行驶的路程为360km360km(2)(2)根据图形可
3、得:根据图形可得:例例1 1 一辆汽车在某段路程中的行驶速度与时间的关系如图所示:一辆汽车在某段路程中的行驶速度与时间的关系如图所示:(1 1)求图中阴影部分的面积,并说明所求面积的实际含义;)求图中阴影部分的面积,并说明所求面积的实际含义;(2 2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004 km2004 km,试建立汽车行驶这段路程时汽车里程表读数,试建立汽车行驶这段路程时汽车里程表读数s kms km与时间与时间t ht h的函数解析式,并作出相应的图象的函数解析式,并作出相应的图象908070605040302010vt1
4、2345本讲稿第五页,共十八页例例2:一家报刊推销员从报社买进报纸的价格是一家报刊推销员从报社买进报纸的价格是每份每份0.20元,卖出的价格是每份元,卖出的价格是每份0.30元,卖不元,卖不完的还可以以每份完的还可以以每份0.08元的价格退回报社在元的价格退回报社在一个月(以一个月(以30天计算)有天计算)有20天每天可卖出天每天可卖出400份,其余份,其余10天只能卖天只能卖250份,但每天从报社买份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最才能使每月所获得的利润最大?并计算每月最多能赚多少钱?多能
5、赚多少钱?解析:本题所给条件较多,数量关系比较复杂,解析:本题所给条件较多,数量关系比较复杂,可以列表分析:可以列表分析:本讲稿第六页,共十八页y在在x 250,400上是一次函数上是一次函数 数量(份)价格(元)金额(元)买进30 x0.206x卖出20 x+10*2500.306x+750退回10(x-250)0.080.8x-200则每月获利润则每月获利润y(6x750)()(0.8x200)6x0.8x550(250 x400)x400份时,份时,y取得最大值取得最大值870元元 答:每天从报社买进答:每天从报社买进400份时,每月获的利润最大,最大利润为份时,每月获的利润最大,最大利
6、润为870元元 例例2一家报刊推销员从报社买进报纸的价格是每份一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份元,卖出的价格是每份0.30元,元,卖不完的还可以以每份卖不完的还可以以每份0.08元的价格退回报社在一个月(以元的价格退回报社在一个月(以30天计算)有天计算)有20天每天可卖天每天可卖出出400份,其余份,其余10天只能卖天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?本讲稿
7、第七页,共十八页例例3 3 某桶装水经营部每天的房租、人员工资等固定成本为某桶装水经营部每天的房租、人员工资等固定成本为200200元,每桶水的元,每桶水的进价是进价是5 5元,销售单价与日均销售量的关系如表所示:元,销售单价与日均销售量的关系如表所示:销售单价销售单价/元元日均销售量日均销售量/桶桶6 67 78 89 9101011111212480480440440400400360360320320280280240240请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?分析:由表中信息可知分析:由表中信息可知销售单
8、价每增加销售单价每增加1 1元,日均销售量就减少元,日均销售量就减少40 40 桶桶销售利润怎样计算较好?销售利润怎样计算较好?解:设在进价基础上增加解:设在进价基础上增加x x元后,日均经营利润为元后,日均经营利润为y y元,则有日均销售量为元,则有日均销售量为 (桶)(桶)而 有最大值有最大值 只需将销售单价定为只需将销售单价定为11.511.5元,就可获得最大的利润。元,就可获得最大的利润。本讲稿第八页,共十八页例例4、某蔬菜菜基地种植西、某蔬菜菜基地种植西红红柿,由柿,由历历年市年市场场行情得知,从二月一行情得知,从二月一日起的日起的300天内,西天内,西红红柿市柿市场场售价与上市售价
9、与上市时间时间关系用关系用图图1的一条折的一条折线线表示;西表示;西红红柿的种植成本与上市柿的种植成本与上市时间时间的关系用的关系用图图2的抛物的抛物线线表示:表示:(1)、写出)、写出图图1表示的市表示的市场场售价与售价与时间时间的函数关系式的函数关系式,写出写出图图2表示的种植成本与表示的种植成本与时间时间的函数关系式的函数关系式;(2)、)、认认定市定市场场售价减去种植成本售价减去种植成本为纯为纯收益,收益,问问何何时时上市的西上市的西红红柿柿纯纯收益最大?(注:市收益最大?(注:市场场售价和种植成本的售价和种植成本的单单位:位:,时间单时间单位:天)位:天)0200300t100300
10、P0tQ50150250300100150250本讲稿第九页,共十八页解解(1)由图由图1可得市场售价与时间的函数关系式为可得市场售价与时间的函数关系式为:由图由图2可得种植成本与时间的函数关系式为可得种植成本与时间的函数关系式为:本讲稿第十页,共十八页(2)设设 时刻的纯收益为时刻的纯收益为 ,则由题意得则由题意得 即即时时,配方整理得配方整理得 ,所以当所以当 时时,取得取得 上的最大值上的最大值当当时时,配方整理得配方整理得所以当所以当时时,取得取得上的最大值上的最大值;当当综上综上,由由 可知可知,在在 上可以取得最大值上可以取得最大值100,此时此时 =50,即二月一日开始的第即二月
11、一日开始的第50天时天时,上市的西红柿纯收益上市的西红柿纯收益最大最大.本讲稿第十一页,共十八页1.1.一家旅社有一家旅社有100100间相同的客房,经过一段时间的经营实践,旅社经理发现,每间相同的客房,经过一段时间的经营实践,旅社经理发现,每间客房每天的价格与住房率之间有如下关系:间客房每天的价格与住房率之间有如下关系:每间每天房价每间每天房价住房率住房率2020元元1818元元 1616元元1414元元6565 757585859595要使每天收入达到最高,每间定价应为(要使每天收入达到最高,每间定价应为()A.20A.20元元 B.18 B.18元元 C.16 C.16元元 D.14 D
12、.14元元2.2.将进货单价为将进货单价为8080元的商品按元的商品按9090元一个售出时,能卖出元一个售出时,能卖出400400个,已知这种商品每个涨价个,已知这种商品每个涨价1 1元,其销元,其销售量就减少售量就减少2020个,为了取得最大利润,每个售价应定为个,为了取得最大利润,每个售价应定为()()A.95 A.95元元 B.100 B.100元元 C.105 C.105元元 D.110 D.110元元CAy=(90+x-80)()(400-20 x)本讲稿第十二页,共十八页小结小结 (1 1)认真审题,准确理解题意;)认真审题,准确理解题意;(2 2)抓准数量关系,运用已有的数学)抓
13、准数量关系,运用已有的数学知识和方法,建立函数关系式;知识和方法,建立函数关系式;(3 3)根据实际情况确定定义域。)根据实际情况确定定义域。本讲稿第十三页,共十八页基本步骤:基本步骤:第一步:阅读理解,认真审题第一步:阅读理解,认真审题 读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质,尤其是理解叙述中的新名词、新概念,进而把握住新信息。数学实质,尤其是理解叙述中的新名词、新概念,进而把握住新信息。第二步:引进数学符号,建立数学模型第二步:引进数学符号,建立数学模型 设自变量为设自变量为x,函数为
14、,函数为y,并用,并用x表示各相关量,然后根据问题已知条件,运用表示各相关量,然后根据问题已知条件,运用已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转已掌握的数学知识、物理知识及其他相关知识建立函数关系式,将实际问题转化为一个数学问题,实现问题的数学化,即所谓建立数学模型。化为一个数学问题,实现问题的数学化,即所谓建立数学模型。第三步:利用数学的方法将得到的常规数学问题(即数第三步:利用数学的方法将得到的常规数学问题(即数学模型)予以解答,求得结果。学模型)予以解答,求得结果。第四步:再转译为具体问题作出解答。第四步:再转译为具体问题作出解答。本讲稿第十四页,共十八页 实
15、际问题实际问题 数学模型数学模型实际问题实际问题 的解的解抽象概括抽象概括数学模型数学模型 的解的解还原说明还原说明推理推理演算演算本讲稿第十五页,共十八页布置作业布置作业P120 练习练习1 A组组2本讲稿第十六页,共十八页应用函数知识解应用题的方法步骤:应用函数知识解应用题的方法步骤:(1)(1)正确地将实际问题转化为函数模型,这是解应用题的关键。正确地将实际问题转化为函数模型,这是解应用题的关键。转化来源于对已知条件的综合分析,归纳与抽象,并与熟转化来源于对已知条件的综合分析,归纳与抽象,并与熟 知的函数模型相比较,以确定函数模型的种类。知的函数模型相比较,以确定函数模型的种类。(2)(
16、2)用相关的函数知识进行合理设计,确定最佳解题方案,进用相关的函数知识进行合理设计,确定最佳解题方案,进 行数学上的计算求解。行数学上的计算求解。(3)(3)把计算获得的结果回到实际问题中去解释实际问题,即对把计算获得的结果回到实际问题中去解释实际问题,即对 实际问题进行总结做答。实际问题进行总结做答。本讲稿第十七页,共十八页2.2.(选做)甲乙两人连续(选做)甲乙两人连续6 6年对某县农村甲鱼养殖业的规模(产量)进行调查,年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息,如下图:提供了两个方面的信息,如下图:甲调查表明:每个甲鱼池平均产量从第甲调查表明:每个甲鱼池平均产量从第1 1年年1 1万只甲鱼上升到第万只甲鱼上升到第6 6年年2 2万只万只乙调查表明:甲鱼池个数由第乙调查表明:甲鱼池个数由第1 1年年3030个减少到第个减少到第6 6年年1010个个请你根据提供的信息说明:请你根据提供的信息说明:第第2 2年甲鱼池的个数及全县甲鱼总数年甲鱼池的个数及全县甲鱼总数到第到第6 6年这个县的甲鱼养殖业的规模比第年这个县的甲鱼养殖业的规模比第1 1年是扩大了还是缩小了?说明理由。年是扩大了还是缩小了?说明理由。布置作业1.(必做必做)课本第课本第126页页 练习练习1,2本讲稿第十八页,共十八页