九年级数学一元二次方程的几种解法.ppt

上传人:豆**** 文档编号:77731562 上传时间:2023-03-16 格式:PPT 页数:58 大小:179.50KB
返回 下载 相关 举报
九年级数学一元二次方程的几种解法.ppt_第1页
第1页 / 共58页
九年级数学一元二次方程的几种解法.ppt_第2页
第2页 / 共58页
点击查看更多>>
资源描述

《九年级数学一元二次方程的几种解法.ppt》由会员分享,可在线阅读,更多相关《九年级数学一元二次方程的几种解法.ppt(58页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、一元二次方程的几种解法一元二次方程的几种解法 引例剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应怎样剪?解:设这块铁片的宽为x cm,那么它的长为(x+5)cm.根据题意,得 x(x+5)=150.去括号,得 x2+5x=150.第十二章第十二章 一元二次方程一元二次方程 12.1 用公式解一元二次方程用公式解一元二次方程 第一节一、一元二次方程的定义一、一元二次方程的定义 只含有一个未知数,并且未知数的最只含有一个未知数,并且未知数的最高次数是高次数是2的整式方程叫做一元二次方程的整式方程叫做一元二次方程.1、只含一个未知数的只含一个未知数的 一元方程一元方程;2、未

2、知数的最高次数是未知数的最高次数是2的的 二次方程二次方程;3、整式方程整式方程.(不是整式方程)(不是整式方程)(不是整式方程)(不是整式方程)(不是一元方程)(不是一元方程)(不是整式方程)(不是整式方程)(不是整式方程)(不是整式方程)(不是一元方程)(不是一元方程)(不是二次方程)(不是二次方程)一元二次方一元二次方程的一般形式程的一般形式 ax2+bx+c=0 (a0)完全的一元二次方程完全的一元二次方程 ax2+bx+c=0 (a0,b0,c0)不完全的不完全的一元二次方程一元二次方程ax2+c=0(a0,c0)ax2+bx=0(a0,b0)ax2=0 (a0)()()化为一般形式

3、后化为一般形式后,()()二次项的系数是否为二次项的系数是否为0是判断一元二次方程的关键是判断一元二次方程的关键.例例、方程是否、方程是否为一元二次方程?如果不是,说明理由;为一元二次方程?如果不是,说明理由;如果是,指出它的二次项、一次项系数如果是,指出它的二次项、一次项系数及常数项及常数项.解:去括号,得解:去括号,得 3x2-3x=2x+4+8.移项,得移项,得 3x2-3x-2x-4-8=0.合并同类项,得合并同类项,得 3x2-5x-12=0.原方程是一元二次方程;二次项系数是原方程是一元二次方程;二次项系数是,一次项系数是一次项系数是 -5-5,常数项是常数项是 12 12.(1)

4、(2)(3)(4)答:答:a=1,b=3,c=-2.答:答:a=3,b=-5,c=2.答:答:a=-2,b=-5,c=3.答:答:a=6,b=1,c=-5.练习:说出下列方程的二次项系数、一练习:说出下列方程的二次项系数、一次项系数和常数项次项系数和常数项:例例2、已知:关于已知:关于x的方程的方程 (2m-1)x2-(m-1)x=5m 是一元二次方程是一元二次方程,求:求:m的取值范围的取值范围.解:解:原方程是一元二次方程,原方程是一元二次方程,2m-10,m .二、一元二次方程的解法二、一元二次方程的解法 形如形如 的的一元二次方程的解法:一元二次方程的解法:ax2=0 (a0)ax2=

5、0 (a0)2x2=0,解:解:x2=0,x=0.形如形如 的的一元二次方程的解法:一元二次方程的解法:ax2=0 (a0)5x2=0,解:解:x2=0,x=0.形如形如 的的一元二次方程的解法:一元二次方程的解法:ax2=0 (a0)-3x2=0,解:解:x2=0,x=0.形如形如 的的一元二次方程的解法:一元二次方程的解法:ax2=0 (a0)ax2=0,解:解:x2=0,x=0.形如形如 的的一元二次方程的解法:一元二次方程的解法:4x2=36,解:解:x2=9,x=3.即即x1=3,x2=-3.4x2=36,x2=9,4x2-36=0.解:解:x=3.即即x1=3,x2=-3.当ac0

6、时,形如形如 (a0,c 0)的的一元二次方程的解法:一元二次方程的解法:当ac0时,此此方程无实数解方程无实数解.解法解法1、直接开平方法、直接开平方法如如 x2=8,2x2=9,-3x2+7=0,等等等等.x2=8.2x2=9.解:-3x2+7=0.解:将将(x-2)看作一个看作一个整体整体,开平方,得开平方,得:解:系数化解:系数化1,得,得解:解:系数化系数化1,得,得开平方开平方,得,得解这解这两个一元一次方程两个一元一次方程,得,得或或解法解法1:直接开平方法:直接开平方法 凡形如凡形如 ax2+c=0 (a0,ac0)或或 a(x+p)2+q=0 (a0,aq0)的一元二次方程都

7、可用直接开平方法解的一元二次方程都可用直接开平方法解.写成()写成()2 的形式,的形式,得得写成()写成()2 的形式,的形式,得得写成()写成()2 的形式,的形式,得得配方:配方:左右两边同时加上一个常左右两边同时加上一个常数,凑成完全平方,得数,凑成完全平方,得写成()写成()2 的形式,的形式,得得配方:配方:左右两边同时加上一个常左右两边同时加上一个常数,凑成完全平方,得数,凑成完全平方,得写成()写成()2 的形式,的形式,得得解:解:移项:移项:将常数项移到等号一边,得将常数项移到等号一边,得配方:配方:左右两边同时加上一个常左右两边同时加上一个常数,凑成完全平方,得数,凑成完

8、全平方,得写成()写成()2 的形式,的形式,得得解:解:移项:移项:将常数项移到等号一边,得将常数项移到等号一边,得开平方,开平方,得得解这解这两个方程,两个方程,得得配方:配方:左右两边同时加上一个常左右两边同时加上一个常数,凑成完全平方,得数,凑成完全平方,得怎样配方:怎样配方:常数项是一次项常数项是一次项系数一半的平方系数一半的平方.a22ab+b2=(ab)2.写成()写成()2 的形式的形式,得得配方配方:左右两边同时加上一次项左右两边同时加上一次项系数一半的平方,得系数一半的平方,得解:解:移项移项:将常数项移到等号一边,得将常数项移到等号一边,得开平方开平方,得得解这解这两个方

9、程两个方程,得得二次项系数化二次项系数化1:两边同时两边同时除以二次项系数,得除以二次项系数,得写成()写成()2 的形式,的形式,得得配方:配方:左右两边同时加上一次项左右两边同时加上一次项系数一半的平方,得系数一半的平方,得解:解:移项:移项:将常数项移到等号一边,得将常数项移到等号一边,得开平方,开平方,得得解这解这两个方程,两个方程,得得二次项系数化二次项系数化1:两边同时两边同时除以二次项系数,得除以二次项系数,得写成()写成()2 的形式,的形式,得得配方:配方:左右两边同时加上一次项左右两边同时加上一次项系数一半的平方,得系数一半的平方,得解:解:移项:移项:将常数项移到等号一边

10、,得将常数项移到等号一边,得开平方,开平方,得得解这解这两个方程,两个方程,得得写成()写成()2 的形式,的形式,得得配方:配方:左右两边同时加上一次项左右两边同时加上一次项系数一半的平方,得系数一半的平方,得解:解:移项:移项:将常数项移到等号一边,得将常数项移到等号一边,得开平方,开平方,得得解这解这两个方程,两个方程,得得二次项系数化二次项系数化1:两边同时两边同时除以二次项系数,得除以二次项系数,得写成()写成()2 的形式,的形式,得得配方:配方:左右两边同时加上一次项左右两边同时加上一次项系数一半的平方,得系数一半的平方,得解:解:移项:移项:将常数项移到等号一边,得将常数项移到

11、等号一边,得开平方,开平方,得得解这解这两个方程,两个方程,得得二次项系数化二次项系数化1:两边同时两边同时除以二次项系数,得除以二次项系数,得解法解法2:配方法:配方法1、将二次项系数化为、将二次项系数化为1:两边同时除以二次项系数;:两边同时除以二次项系数;2、移项:将常数项移到等号一边;、移项:将常数项移到等号一边;3、配方:配方:左右两边同时加上一次项系数一半的平方;左右两边同时加上一次项系数一半的平方;4、等号左边写成(、等号左边写成()2 的形式;的形式;5、开平方:化成一元一次方程;、开平方:化成一元一次方程;6、解一元一次方程;、解一元一次方程;配方法的基本步骤配方法的基本步骤

12、:7、写出方程的解、写出方程的解.三、练习三、练习练习练习 1、填空:、填空:(1)(2)(3)(4)(5)164练习练习 1、填空、填空:(1)(2)(3)(4)(5)2、用配方法解下列方程、用配方法解下列方程:(1)(2)(3)(4)(1)解:解:(2)解:解:(3)解:解:(4)解:解:四、小结四、小结1、一元二次方程的概念;、一元二次方程的概念;2、两种解法:(、两种解法:(1)直接开平方法;)直接开平方法;(2)配方法)配方法.3、转化的数学思想、转化的数学思想.五、作业五、作业P15 A组组 用直接开平方法解下列方程:用直接开平方法解下列方程:3、用配方法解下列方程:、用配方法解下列方程:B组组 1、解下列关于、解下列关于x的方程:的方程:补充:已知补充:已知 (m-1)x2+mx=x-1 是是 (1)一元二次方程时()一元二次方程时(2)一元二次方)一元二次方程时,求:程时,求:m的取值范围的取值范围.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 家庭教育

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁