方程根和函数零点(2).ppt

上传人:石*** 文档编号:77560977 上传时间:2023-03-15 格式:PPT 页数:31 大小:1.83MB
返回 下载 相关 举报
方程根和函数零点(2).ppt_第1页
第1页 / 共31页
方程根和函数零点(2).ppt_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《方程根和函数零点(2).ppt》由会员分享,可在线阅读,更多相关《方程根和函数零点(2).ppt(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、关于方程的根与函数的零点课件(2)第一张,PPT共三十一页,创作于2022年6月学习目标1.通过二次函数的图像,了解二次函数与一元二次方程的关系,能判断一元二次方程根的存在性及根的个数;2.了解函数的零点与方程根的联系,能利用函数零点与方程根的关系确定方程根的个数。第二张,PPT共三十一页,创作于2022年6月问题探究第三张,PPT共三十一页,创作于2022年6月 今天我们可以从教科书中了解各式各样方程的解法,但在数学发展史上,方程的求解却经历了相当漫长的岁月.我国古代数学家在约公元50年100年编成的九章算术,给出了求一次方程、二次方程和三次方程根的具体方法 第四张,PPT共三十一页,创作于

2、2022年6月花拉子米(约780约850)给出了一次方程和二次方程的一般解法。阿贝尔(18021829)挪威数学家.证明了五次以上一般方程没有求根公式。第五张,PPT共三十一页,创作于2022年6月卡尔达诺,意大利数学家,他第一个发表了三次代数方程一般解法的卡尔达诺公式,也称卡当公式(解法的思路来自塔塔利亚,两人因此结怨,争论多年)。他的学生费拉里第一个求出四次方程的代数解。第六张,PPT共三十一页,创作于2022年6月韦达是法国十六世纪最有影响的数学家之一。第一个引进系统的代数符号,并对方程论做了改进。韦达讨论了方程根的各种有理变换,发现了方程根与系数之间的关系即“韦达定理”。第七张,PPT

3、共三十一页,创作于2022年6月 方程x22x+1=0 x22x+3=0y=x22x3y=x22x+1函数函数的图象方程的实数根x1=1,x2=3x1=x2=1无实数根函数的图象与x轴的交点(1,0)、(3,0)(1,0)无交点x22x3=0 xy01321121234.xy0132112543.yx012112y=x22x+3问题探究问题2 求出表中一元二次方程的实数根,画出相应的二次函数图像的简图,并写出函数的图象与x轴的交点坐标第八张,PPT共三十一页,创作于2022年6月方程ax2+bx+c=0(a0)的根函数y=ax2+bx+c(a0)的图象判别式=b24ac0=00函数的图象与 x

4、 轴的交点有两个相等的实数根x1=x2没有实数根xyx1x20 xy0 x1xy0(x1,0),(x2,0)(x1,0)没有交点两个不相等的实数根x1、x2问题3 若将上面特殊的一元二次方程推广到一般的一元二次方程及相应的二次函数的图象与x轴交点的关系,上述结论是否仍然成立?1.方程根的个数就是函数图象与x轴交点的个数。2.方程的实数根就是函数图象与x轴交点的横坐标。结论 第九张,PPT共三十一页,创作于2022年6月 对于函数y=f(x),叫做函数y=f(x)的零点。方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点函数的零点定义:等价关系使f(x)=0的实数x

5、辨析:函数的零点是不是交点?概念形成第十张,PPT共三十一页,创作于2022年6月 2-2和71 示例练习零点的求法(零点的求法(1 1)代数法第十一张,PPT共三十一页,创作于2022年6月问题4 如图是某地从0点到12点的气温变化图,假设气温是连续变化的,请将图形补充成完整的函数图象。这段时间内,是否一定有某时刻的气温为0度?为什么?第十二张,PPT共三十一页,创作于2022年6月第十三张,PPT共三十一页,创作于2022年6月问题探究第十四张,PPT共三十一页,创作于2022年6月结论xy00yx0yx0yx如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(

6、b)0,那么,函数y=f(x)在区间(a,b)内有零点,即存在 使得f(c)=0,这个c也就是方程f(c)=0 的根。第十五张,PPT共三十一页,创作于2022年6月xy0思考1:函数y=f(x)在区间a,b上的图象是一条连续不断的曲线,若函数y=f(x)在区间(a,b)内有零点,一定能得出f(a)f(b)0的结论吗?第十六张,PPT共三十一页,创作于2022年6月结论:函数y=f(x)在区间a,b上的图象是连续不断的一条曲线:(1)f(a)f(b)0 函数y=f(x)在区间(a,b)内有零点;(2)函数y=f(x)在区间(a,b)内有零点 f(a)f(b)0。第十七张,PPT共三十一页,创作

7、于2022年6月思考思考2 2:如果函数如果函数 y=f(x)y=f(x)在在a,ba,b上是连续的上是连续的单调单调函数函数,并且在闭区间的两个端点上的函数值互异即并且在闭区间的两个端点上的函数值互异即f(a)f(b)0,f(a)f(b)0,那么这个函数在那么这个函数在(a,b)(a,b)内的零点个数能内的零点个数能确定吗?确定吗?第十八张,PPT共三十一页,创作于2022年6月由表3-1和图3.13可知f(2)0,即f(2)f(3)0,f(1.5)=2.8750,所以f(x)=x33x+5在区间(1,1.5)上有零点。又因为f(x)是(,)上的减函数,所以在区间(1,1.5)上有且只有一个

8、零点。xy0132112543.零点的求法(2)图像法问题6.第二十张,PPT共三十一页,创作于2022年6月练习2:1第二十一张,PPT共三十一页,创作于2022年6月第二十二张,PPT共三十一页,创作于2022年6月问题7.已知关于x的二次方程x2+2mx+2m+1=0.(1)若方程有两根,其中一根在区间(1,0)内,另一根在区间(1,2)内,求m的范围.(2)若方程有一个根在(0,2)内,求m的范围.(3)若方程有一个根比2大,另一个根比2小,求m范围.(4)若方程两根均在区间(0,1)内,求m的范围.【变式引申】第二十三张,PPT共三十一页,创作于2022年6月解:(1)条件说明抛物线

9、f(x)=x2+2mx+2m+1与x轴的交点分别在区间(1,0)和(1,2)内,画出示意图,得.第二十四张,PPT共三十一页,创作于2022年6月问题7:已知关于x的二次方程x2+2mx+2m+1=0.(2)若方程有一个根在(0,2)内,求m的范围.(3)若方程有一个根比2大,另一个根比2小,求m范围.(4)若方程两根均在区间(0,1)内,求m的范围.解:由题意得:f(0)f(2)0即(2m+1)(6m+5)0解得:第二十五张,PPT共三十一页,创作于2022年6月问题7:已知关于x的二次方程x2+2mx+2m+1=0.(3)若方程有一个根比2大,另一个根比2小,求m范围.(4)若方程两根均在

10、区间(0,1)内,求m的范围.解:由题意得:f(2)0即6m+50解得:第二十六张,PPT共三十一页,创作于2022年6月问题7:已知关于x的二次方程x2+2mx+2m+1=0.(4)若方程两根均在区间(0,1)内,求m的范围.解:由题意得:解得:第二十七张,PPT共三十一页,创作于2022年6月 对于函数y=f(x),叫做函数y=f(x)的零点。方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点函数的零点定义:等价关系使f(x)=0的实数x如果函数y=f(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0,那么,函数y=f(x)在区间(a,b

11、)内有零点,即存在 使得f(c)=0,这个c也就是方程f(c)=0 的根。零点存在定理函数y=f(x)在区间a,b上的图象是连续不断的一条曲线:(1)f(a)f(b)0 函数y=f(x)在区间(a,b)内有零点;(2)函数y=f(x)在区间(a,b)内有零点 f(a)f(b)0。三个结论:(3)如果函数 y=f(x)在a,b上是连续的单调函数,且f(a)f(b)0,那么这个函数在(a,b)内的零点个数是唯一的。零点的求法代数法和图象法第二十八张,PPT共三十一页,创作于2022年6月函数零点方程根,图象连续总有痕。数形本是同根生,端值计算是根本。借问零点何处有,端值互异零点生。温馨提示作业:作业本第二十九张,PPT共三十一页,创作于2022年6月设计思路基于数形结合思想基于数学文化第三十张,PPT共三十一页,创作于2022年6月感谢大家观看第三十一张,PPT共三十一页,创作于2022年6月

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 生活休闲 > 资格考试

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁