植物的呼吸作用 (2)讲稿.ppt

上传人:石*** 文档编号:77558391 上传时间:2023-03-15 格式:PPT 页数:43 大小:1.12MB
返回 下载 相关 举报
植物的呼吸作用 (2)讲稿.ppt_第1页
第1页 / 共43页
植物的呼吸作用 (2)讲稿.ppt_第2页
第2页 / 共43页
点击查看更多>>
资源描述

《植物的呼吸作用 (2)讲稿.ppt》由会员分享,可在线阅读,更多相关《植物的呼吸作用 (2)讲稿.ppt(43页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、关于植物的呼吸作用(2)第一页,讲稿共四十三页哦ATP抑制磷酸果糖激酶、丙酮酸激酶和丙酮酸脱氢酶柠檬酸抑制丙酮酸激酶和丙酮酸脱氢酶,还抑制脂肪酸的分解以调节控制乙酰CoA的浓度ADP、AMP和Pi则是淀粉磷酸化酶的正效应物,加速淀粉的分解。在PPP代谢过程中,NADP是正效应物,而NADPH则是G-6-P脱氢酶和6-磷酸葡萄糖酸脱氢酶的负效应物,当NADPH多时抑制这个两酶的活性,减少6-磷酸葡萄糖酸和核酮糖-5-磷酸的生成。图5-18呼吸代谢调节的可能部位第二页,讲稿共四十三页哦一、巴斯德效应和糖酵解的调节一、巴斯德效应和糖酵解的调节当植物组织周围的氧浓度增加时,酒精发酵产物的积累逐渐减少,

2、这种氧抑制酒精发酵的现象叫做“巴斯德效应巴斯德效应”(Pasteur effect)(Pasteur effect)。有氧条件下发酵作用受到抑制的主要原因主要是NADH的缺乏 无氧条件下EMP中产生的NADH用于发酵;当丙酮酸被还原为乳酸,乙醛被还原为乙醇时,NADH又被氧化成NAD,如此循环周转.但在有氧条件下,NADH能够通过GPDHAP穿梭透入线粒体,用于呼吸链电子传递,而不能用于丙酮酸的还原,发酵作用就会停止。法国微生物 学家第三页,讲稿共四十三页哦 ATP水平较高在有氧条件下细胞中ATP和PEP等水平较高,抑制了糖酵解途径的调节酶-磷酸果糖激酶和丙酮酸激酶的活性,因此降低了糖酵解的速

3、率,作为糖酵解两个关键酶的正效应剂有ADP、Pi、F1,6BP、Mg2和K,负效应剂还有Ca2、3-磷酸甘油酸、2-磷酸甘油酸、磷酸烯醇式丙酮酸等。在无氧条件下,丙酮酸的有氧降解受到抑制,柠檬酸和ATP合成减少,积累较多的ADP和Pi,促进了两个关键酶活性,使糖酵解速度加快。此外,己糖激酶也参与调节糖酵解速度,属于变构调节酶,其变构抑制剂为其产物6-磷酸葡萄糖。第四页,讲稿共四十三页哦二、丙酮酸有氧分解的调节二、丙酮酸有氧分解的调节丙酮酸氧化脱羧酶系的催化活性受到乙酰CoA和NADH的抑制。这种抑制效应可相应地为CoA和NAD+所逆转。TCA循环也受到许多因素的调节。过高浓度的NADH,对异柠

4、檬酸脱氢酶、苹果酸脱氢酶等的活性均有抑制作用。NAD+为上述酶的变构激活剂。ATP对异柠檬酸脱氢酶、-酮戊二酸脱氢酶和苹果酸脱氢酶均有抑制作用,而ADP对这些酶有促进作用。琥珀酰CoA对柠檬酸合成酶和-酮戊二酸脱氢酶有抑制作用。AMP对-酮戊二酸脱氢酶活性,CoA对苹果酸酶活性都有促进作用。-酮戊二酸对异柠檬酸脱氢酶的抑制和草酰乙酸对苹果酸脱氢酶的抑制则属于终点产物的反馈调节。三、三、PPPPPP的调节的调节 PPP主要受NADPH/NADP+比值的调节,NADPH竞争性地抑制葡萄糖-6-磷酸脱氢酶的活性,使葡萄糖-6-磷酸转化为6-磷酸葡萄糖酸的速率降低。NADPH也抑制6-磷酸葡萄糖酸脱氢

5、酶活性。葡萄糖磷酸脱氢酶也被氧化的谷胱甘肽所抑制。而光照和供氧都可提高NADP+的生成,可以促进PPP。第五页,讲稿共四十三页哦四、能荷的调节四、能荷的调节能荷(energy charge,EC)-细胞中由ATP在全部腺苷酸中所占有的比例。它所代表的是细胞中腺苷酸系统的能量状态。通过细胞内腺苷酸之间的转化对呼吸代谢的调节作用称为能荷调节。当细胞中全部腺苷酸都是ATP时,能荷为1;全部是AMP时,能荷为0,全部是ADP时,能荷为0.5。三者并存时,能荷随三者比例的不同而异。通过细胞反馈控制,活细胞的能荷一般稳定在0.750.95。反馈控制的机理如下:合成ATP的反应受ADP的促进和ATP的抑制;

6、而利用ATP的反应则受到ATP的促进和ADP的抑制。第六页,讲稿共四十三页哦五、电子传递途径的调控五、电子传递途径的调控线粒体中电子传递途径会由于内外因的影响而发生改变。如处于稳定生长期的酵母细胞内线粒体在氧化NADH时,P/O是3;而处于稳定生长期前的P/O则是2,这说明二者的电子传递途径是不同的。大量实验证明,植物在感病、受旱、衰老时交替途径都有明显加强。马铃薯块茎的伤呼吸,刚开始的时候,切片呼吸的80100%是对CO及CN-敏感的,24h以后CO对切片的呼吸只起极小的作用,CN-的作用也减小。这表明,电子传递途径已由以细胞色素氧化系统为主的途径改变为对CN-和CO不敏感的抗氰途径。在植物

7、体内,内源激素乙烯和内源水杨酸可诱导交替途径的运行,外源水杨酸和乙烯也能诱导交替途径的增强,同时可以诱导交替氧化酶基因的提前表达。植物缺磷时,体内ADP和Pi含量降低,磷酸化作用受到抑制,底物脱下的电子就越过复合体而直接交给UQ,并进入交替途径,以适应缺磷环境。第七页,讲稿共四十三页哦植物线粒体内膜上电子传递链和植物线粒体内膜上电子传递链和ATPATP合成酶的分布合成酶的分布第八页,讲稿共四十三页哦图11.13糖酵解磷酸戊酸途径和三羧酸循环将许多起始物输入高等植物中许多生物合成途径中,这个途径说明了植物体生物合成对这些碳释放途径的依赖程度,强调了并不是所有糖分解途径的碳都被氧化为CO2。第九页

8、,讲稿共四十三页哦第五节第五节 呼吸作用生理指标及其影响因素呼吸作用生理指标及其影响因素 一、呼吸作用生理指标及其测定方法一、呼吸作用生理指标及其测定方法 判断呼吸作用强度和性质的指标主要有呼吸速率和呼吸商。(一)呼吸速率(一)呼吸速率(respiratory rate)单位时间单位重量(干重、鲜重)的植物组织或单位细胞、毫克氮所放出的CO2的量或吸收的O2的量。C C6 6H H1212O O6 6 +6O+6O2 2 酶 6CO6CO2 2 +6H+6H2 2O O 干物质消耗量 O2吸收量 CO2释放量、氧电极法 红外线CO2气体分析仪 瓦布格检压计法 广口瓶法、干燥器法 mgDWg-1

9、h-1 molg-1h-1 lg-1h-1细胞、线粒体的耗氧速率可用氧电极和瓦布格检压计等测定。叶片、块根、块茎、果实等器官释放CO2的速率,用红外线CO2气体分析仪测定,第十页,讲稿共四十三页哦(二)(二)呼吸商呼吸商(respiratory quotient,RQ)植物组织在一定时间内,放出二氧化碳的量与吸收氧气的量的比值叫做呼吸商,又称呼吸系数。RQRQ=放出的放出的COCO2 2量量 /吸收的吸收的O O2 2量量 (5-21)呼吸底物种类不同,呼吸商也不同。1、以葡萄糖作为呼吸底物,且完全氧化时,呼吸商是1 C6H12O6+6O2 6CO2+6H2O RQ=6/6=1.0 (5-22

10、)2、以脂肪或其它高度还原的化合物为呼吸底物,氧化过程中脱下的氢相对较多(H/O比大),形成H2O时消耗的O2多,呼吸商小于1,如以棕榈酸作为呼吸底物,:C16H32O2+23O2 16CO2+16H2O RQ=16/23=0.7(5-23)3、以有机酸等含氧较多的有机物作为呼吸底物,呼吸商则大于1,如柠檬酸的呼吸商为1.33。C6H8O74.5O2 6CO24H2O RQ=6/4.5=1.33 (5-24)第十一页,讲稿共四十三页哦 4、如以蛋白质作为呼吸底物时,呼吸商可大于1或小于1,这要看蛋白质所含氨基酸的性质,取决于氨基酸的还原程度。如谷氨酸的RQ值为1.11:2C5H9O4N9O2

11、10CO2 2NH3 6H2O RQ=10/9=1.11 而亮氨酸的RQ值为0.8 2C6H13O2N15O2 12CO22NH3 10H2O RQ=12/15=0.8可根据呼吸商的大小大致推测呼吸作用的底物及其性质的改变,但需注意:1、呼吸底物只有在完全氧化时,这种推测才有意义。在无氧条件下发生酒精发酵,只有CO2释放,无O2的吸收,则RQ。2,排除体内其他反应的干扰如有羧化作用发生,则RQ减小。图图5-19 小麦和亚麻种子萌发及幼苗生长小麦和亚麻种子萌发及幼苗生长过程中呼吸商的变化过程中呼吸商的变化第十二页,讲稿共四十三页哦二、内部因素对呼吸速率的影响不同的植物种类、代谢类型、生育特性、生

12、理状况,呼吸速率各有所不同。一般而言,凡是生长快的植物呼吸速率就高,生长慢的植物呼吸速率就低。例如细菌和真菌繁殖较快,其呼吸速率高于高等植物。在高等植物中小麦、蚕豆又比仙人掌高得多,通常喜温植物(玉米、柑橘等)高于耐寒植物(小麦、苹果等),草本植物高于木本植物(表5-4)。第十三页,讲稿共四十三页哦内部因素对植物呼吸速率的影响内部因素对植物呼吸速率的影响生长快的生长慢的,细菌、真菌高等植物生长旺盛的衰老休眠的,喜温植物耐寒植物,草本植物木本植物,阴生植物阳生植物,生殖器官营养器官,雌蕊雄蕊花瓣花萼,茎顶端茎基部,种子内胚胚乳,多年生植物春季冬季,受伤、感病的正常健康的第十四页,讲稿共四十三页哦

13、同一植物的不同器官或组织,呼吸速率也有明显的差异。例如,生殖器官的呼吸较营养器官强;同一花内又以雌蕊最高,雄蕊次之,花萼最低;生长旺盛的、幼嫩的器官的呼吸较生长缓慢的、年老器官的呼吸为强;茎顶端的呼吸比基部强;种子内胚的呼吸比胚乳强(表5-5)。一年生植物开始萌发时,呼吸迅速增强,随着植株生长变慢,呼吸逐渐平稳,并有所下降,开花时又有所提高。多年生植物呼吸速率表现出季节周期性变化。温带植物的呼吸速率以春季发芽和开花时最高,冬天降到最低点。受伤、感病的正常健康的植物第十五页,讲稿共四十三页哦三、外界条件对呼吸速率的影响三、外界条件对呼吸速率的影响(一)温度(一)温度 1、温度对呼吸作用的影响的主

14、要在于:影响呼吸酶活性;影响O2在水介质中的溶解度。在一定范围内,呼吸速率随温度的增高而增高,达到最高值后,继续增高温度,呼吸速率反而下降。温度系数Q10 温度每增高10,呼吸速率增加的倍数。Q10=(t+10)时的呼吸速率/t时的呼吸速率在035生理温度范围内,呼吸作用的Q10为22.5,即温度每增高10,呼吸速率增加22.5,进一步增高温度,Q10开始下降。2、呼吸作用有温度三基点,即最低、最适、最高点第十六页,讲稿共四十三页哦呼吸作用的温度三基点呼吸作用的温度三基点呼吸作用的温度三基点呼吸作用的温度三基点三基点三基点三基点三基点定义定义特性特性最低温度能进行呼吸的温度低限,一般植物为0

15、左右 低于光合和生长最低温度,在此温度时植物不生长,但生命仍维持,呼吸作用的最低温度也是生命的最低温度。最适温度保持稳态的最高呼吸速率的温度,一般植物为2530高于光合和生长最适温度,处于此温度,净光合积累由于呼吸消耗而减少,对生长不利。最高温度能进行呼吸的温度高限,一般植物为3545短时间内可使呼吸速率较最适温度的高,但时间稍长后,呼吸速率就会急剧下降,这是因为高温加速了酶的钝化或失活。不同的植物三基点不同:热带植物温带寒带植物第十七页,讲稿共四十三页哦图 5-20 温度对豌豆幼苗呼吸速率的影响 预先在25下培养4d的豌豆幼苗相对呼吸速率为10,放到不同温度下,3h后,测定相对呼吸速率的变化

16、。呼吸作用的最高温度一般在3545之间,最高温度在短时间内可使呼吸速率较最适温度的高,但时间稍长后,呼吸速率就会急剧下降(图5-20),这是因为高温加速了酶的钝化或失活。第十八页,讲稿共四十三页哦 (二)氧气 氧是有氧呼吸的必要条件,缺氧条件下植物进行无氧呼吸,随O2浓度的提高,有氧呼吸上升,无氧呼吸减弱直至消失。无氧呼吸停止进行的最低氧含量(10%左右)称为无氧呼吸消失点。在氧浓度较低的情况下,有氧呼吸随氧浓度的增大而增强,但增至一定程度时,有氧呼吸就不再增强了,这一氧浓度称为氧饱和点。例如在15和20下,洋葱根尖呼吸的氧饱和点为20%。过高的氧浓度对植物有毒,这可能与活性氧代谢形成自由基有

17、关。图5-21 苹果在不同氧分压下的气体交换实点为耗氧量 空点为CO2释放量 虚线为无氧条件下CO2的释放,消失点表示无氧呼吸停止第十九页,讲稿共四十三页哦空气中有较丰富的氧气,在25C空气中饱和氧浓度约为21,此时与之平衡的水溶液中的氧可以达到265molL,而细胞色素氧化酶催化的反应中氧的K值不到1molL,因此在正常情况下,空气中氧的浓度不会影响呼吸的进行。氧在水中的扩散要比空气中慢3106倍。因此对植物体来说,氧供应的限制主要是来自氧的液相扩散速率的限制。细胞间隙对于加速氧气的扩散很重要。一些植物体中会形成特殊的结构,提供氧气的扩散通道。如水稻从叶到根有通气组织使氧可以向根部扩散。沼泽

18、地树木的根或无氧呼吸或产生某种结构以利氧气的运输,如海榄雌屑和红树属生长出气根露出水面,使氧气可以从气根扩散进入根部。第二十页,讲稿共四十三页哦Z在15和20下,氧饱和点为20%,在30和35下,氧饱和点则为40%左右。显然是由呼吸酶和中间电子传递体的周转率所造成的,也和末端氧化酶与氧的亲和力有关。由于氧浓度对呼吸类型有重要影响,因而在不同氧浓度下呼吸商也不一样。以葡萄糖为呼吸底物,当氧浓度低于无氧呼吸消失点时,呼吸商大于1;当氧浓度高于消失点时,无氧呼吸停止,呼吸商等于1。过高的氧浓度(70%100%)对植物有毒,这可能与活性氧代谢形成自由基有关。图5-22 氧分压和温度对洋葱根尖呼吸速率的

19、影响过低的氧浓度会由于无氧呼吸增强,过多消耗体内养料,甚至产生酒精中毒,原生质蛋白变性而导致植物受伤死亡。第二十一页,讲稿共四十三页哦(三)二氧化碳(三)二氧化碳二氧化碳是呼吸作用的最终产物,当外界环境中二氧化碳浓度增高时,脱羧反应减慢,呼吸作用受到抑制。大气中C02 的含量约为0033,这样的浓度不会抑制植物组织的呼吸作用。当C02的含量增加到35时,对呼吸有一定的抑制。这种效应可在果蔬、种子贮藏中加以利用。土壤中由于植物根系的呼吸特别是微生物的呼吸作用会产生大量的二氧化碳,如土壤板结通气不良,积累的二氧化碳可达410,甚至更高,如不及时进行中耕松土,就会使植物根系呼吸作用受阻。一些植物(如

20、豆科)的种子由于种皮限制,使呼吸作用释放的CO2难以释出,种皮内积聚起高浓度的CO2抑制了呼吸作用,从而导致种子休眠。第二十二页,讲稿共四十三页哦(四)水分(四)水分植物组织的含水量与呼吸作用有密切的关系。种子:干燥种子的呼吸作用很微弱,例如豌豆种子呼吸速 率只有0.00012lCO2g-1DWh-1。吸水后,呼吸速率迅速增加。因此,种子含水量是制约种子呼吸作用强弱的重要因素。整体植物:接近萎蔫时,呼吸速率有所增加,如萎蔫时间较长,呼吸速率下降。影响呼吸的外因除温度、氧气、二氧化碳、水分之外,还有:呼吸底物的含量(如可溶性糖)、机械损伤(伤呼吸)、一些矿质元素(如磷、铁、铜等)(盐呼吸)、病菌

21、感染(使寄主的线粒体增多,酚酶活性提高,抗氰呼吸和PPP途径增强)、化学物质(呼吸抑制剂)等。第二十三页,讲稿共四十三页哦第六节第六节 植物呼吸作用与农业生产的关系植物呼吸作用与农业生产的关系 一、呼吸效率的概念和意义一、呼吸效率的概念和意义 呼吸效率(respiratory ratio)-每消耗1g葡萄糖可合成生物大分子物质的g数,可用下式表示:呼吸效率(%)(合成生物大分子的克数/1g葡萄糖氧 化)100 (5-25)生长旺盛和生理活性高的部位如幼根、幼茎、幼叶、幼果等,呼吸作用所产生的能量和中间产物,大多数用来构成细胞生长的物质如蛋白质、核酸、纤维素、磷脂等,因而呼吸效率很高。生长活动已

22、停止的成熟组织或器官,除一部分用于维持细胞的活性外,有相当部分能量以热能形式散失掉,因而呼吸效率低。第二十四页,讲稿共四十三页哦根据上述情况可把呼吸分为两类:维持呼吸-用以维持细胞的活性的呼吸。相对稳定的,每克干重植物约消耗1520mg葡萄糖。生长呼吸-用于供生长发育所需要的呼吸。如生物大分子的合成,离子吸收等。从植物的一生来看,种子萌发到苗期,主要是进行生长呼吸,呼吸效率高,随着营养体的生长,生长呼吸占总呼吸比例下降,而维持呼吸所占的比例增加。株型高大的品种,维持呼吸所占的比例较高。前期应促进呼吸满足植物的生长,后期可适当降低呼吸,在保持一定的维持呼吸基础上,减少过多的呼吸消耗。第二十五页,

23、讲稿共四十三页哦二、种子及幼苗的呼吸作用二、种子及幼苗的呼吸作用(一一)种子形成与呼吸作用种子形成与呼吸作用1 1、呼吸速率、呼吸速率 种子形成初期,随种子细胞数目的增多,体积增大,呼吸逐步升高,到灌浆期呼吸速率达灌浆期呼吸速率达到高峰到高峰,然后下降。水稻灌浆最快在开花后15d左右,此时呼吸速率也最高。菜豆种子成熟期的呼吸速率灌浆高峰之后,呼吸速率逐渐下降,主要是细胞内干物质(非呼吸基质)含量增加,含水量降低,原生质脱水,线粒体结构受到破坏等原因所造成的。2 2、呼呼吸吸途途径径 在种子成熟过程中,也发生变化。水稻植株在开花初期籽粒的呼吸途径以EMT-TCACEMT-TCAC途途径径为为主主

24、,以后随随着着种种子子的的成熟,成熟,PPPPPP途径加强。途径加强。第二十六页,讲稿共四十三页哦(二)种子的安全贮藏与呼吸作用(二)种子的安全贮藏与呼吸作用干燥种子的呼吸作用与粮食贮藏有密切关系。含水量很低的风干种子呼吸速率微弱。一般油料种子含水量在8 89 9、淀粉种子含水量在12121414以下,种子中原生质处于凝胶状态,呼吸酶活性低,呼吸极微弱,可以安全贮藏,此时的含水量称之为安全含水量安全含水量。多数树种的种子安全含水量为5 51414。当种子含水量超过安全含水量,呼吸作用就显著增强。如果含水量继续增加,则呼吸速率几乎成直线上升。图图5-24 谷粒或种子的含水量对谷粒或种子的含水量对

25、呼吸速率的影响呼吸速率的影响 1.亚麻;2.玉米;3.小麦第二十七页,讲稿共四十三页哦为什么当种子含水量超过安全含水量,呼吸作用就显著增强?在安全水以下的水主要以束缚水的形式存在,安全水以上的水是自由水。当种子含水量超过安全含水量后,自由水增加,原生质由凝胶转变成溶胶,呼吸酶活性增强,呼吸也就增强。为什么淀粉种子安全含水量高于油料种子?主要是淀粉种子中含淀粉等亲水物质多,其中存在的束缚水含量要高一些。而油料种子中含疏水的油脂较多,存在的束缚水也较少。在粮食贮藏过程中除了保持仓库的干净做好杀菌消毒、防虫防鼠外,还要根据干燥种子呼吸作用的特点,做到:第二十八页,讲稿共四十三页哦 贮藏种子注意点贮藏

26、种子注意点:1、控制水分:种子的含水量不得超过安全含水量。要晒干进仓、保持仓库干燥。否则,呼吸旺盛消耗大量贮藏物质,呼吸散热提高粮堆温度,有利于微生物活动,易导致粮食的变质,使种子丧失发芽力和食用价值。(经验认为,在514的范围内,含水量每增加1,种子的寿命便会缩短一半。)2、降温:注意库房的通风降温,在能够忍受的范围内,温度越低,种子活力衰减的速度越慢。水稻种子在1415库温条件下贮藏23年,仍有80%以上的发芽率。(经验认为,在050之间,温度每提高5,种子的寿命会缩短一半)3、控制气体成分:可对库房内空气成分加以控制,适当增高二氧化碳含量和降低氧含量。或将粮仓中空气抽出,充入氮气,达到抑

27、制呼吸,安全贮藏的目的。(通常认为最佳效果是氧不高于12%、二氧化碳不应低于2%,)第二十九页,讲稿共四十三页哦(三)萌发种子和幼苗的呼吸作用(三)萌发种子和幼苗的呼吸作用 种子萌发的主要条件是水分、空气和温度。1、水分 水分的充分吸收是种子萌发的先决条件。水稻种子吸水量达到干重的40%,豆类种子吸水量达到干重的100150,多数林木种子含水量超过4060才可能萌发。在种子萌发的初期(810h内),呼吸速率的上升主要是因为吸收了水分的缘故,而与温度并无十分显著的关系。1824h后,呼吸速率的再度增高,则可归因于温度和氧气。呼吸商也有明显的变化,在种胚未突破种皮之前,主要进行无氧呼吸,种子呼吸产

28、生的CO2大大超过O2的消耗,RQ大于1;当胚根露出后,以有氧呼吸为主,O2的消耗速率上升,一般RQ等于1.0左右。油料种子萌发时,脂肪通过乙醛酸循环转化为糖,需耗氧而不释放二氧化碳,RQ可降低到0.5以下,当脂肪耗尽,以糖为呼吸底物时,RQ会接近于1。第三十页,讲稿共四十三页哦水稻落谷后“水长芽,旱长根”.芽鞘的生长是已有器官的伸长生长,在胚发育中已分化完成,靠无氧呼吸提供的能量已可发生,而根以细胞分裂生长方式为主,需有氧呼吸提供能量,否则根不下扎,降低了苗的抗逆能力。所以要浅灌勤灌,湿润育秧。q种子如果播种过深或长期淹水缺氧,会影响正常的有氧呼吸,对物质转化和器官的形成都不利,特别是根的生

29、长和分化会受到明显的抑制(表5-6)。q油料种子萌发时,耗氧多,呼吸商小,所以更需要注意浅播,保证O2的供应。q有不少种子在萌发早期或吸胀过程中都表现出抗氰呼吸的存在。这可能与提高种子温度加快萌发时的物质代谢有关。第三十一页,讲稿共四十三页哦三、果实、块根、块茎的呼吸作用三、果实、块根、块茎的呼吸作用1 1、呼吸跃变现象、呼吸跃变现象当果实成熟到一定时期,其呼吸速率突然增高,然后又迅速下降的现象称之为呼吸跃变现象。2 2、类型、类型:按成熟过程中是否出现呼吸跃变将果实分两类:一类是呼吸跃变型,如苹果、梨、香蕉、番茄、桃、杏、柿、无花果等;另一类非呼吸跃变型,如柑橘、葡萄、菠萝、樱桃、草莓、绿色

30、蔬菜等。但后一类果实一定条件下(如用乙烯处理)也可能出现呼吸跃变现象。图 5-25 在果实发育和成熟中,有呼吸高峰和无呼吸高峰的果实的发展进程呼吸跃变现象一般出现在果实变软变香,色泽变红或变黄,食用价值最佳的时期。第三十二页,讲稿共四十三页哦3 3、呼吸跃变产生原因和影响因素:、呼吸跃变产生原因和影响因素:(1)温度:与温度关系很大,例如苹果贮藏过程中在22.5时呼吸跃变出现早而显著,在10下出现稍迟且不显著,而在2.5下呼吸跃变则不出现。(2)乙烯:与果实内乙烯的释放密切相关。一般来说,0.1gL-1是一个阈值,即果实内部气体中乙烯的浓度在0.1gL-1以上才显现出乙烯的生理作用。果实的呼吸

31、跃变与乙烯形成相平行。(3)交替途径:苹果在发育期的呼吸主要是通过细胞色素途径,但接近成熟期则转变为以交替途径为主,而在呼吸跃变期后细胞色素途径又逐渐增强呼吸跃变是果实进入完熟的一种特征,在果实贮藏和运输中,推迟呼吸跃变的发生,并降低其发生的强度,从而达到延迟成熟、防止发热腐烂的目的。第三十三页,讲稿共四十三页哦 4 4、果蔬贮藏、果蔬贮藏:(1 1)降低温度)降低温度 根据贮藏物选择适宜的温度,大多数果实45,苹果4,马铃薯23;喜温果蔬12 左右,香蕉1114,甘薯1014。番茄成熟果实可贮在02,但绿熟果的贮藏适温为1013,低于8即遭冷害,表现为水浸状软烂或蒂部开裂,现褐色小园斑,不能

32、正常成熟,易感病腐烂。(2 2)控制湿度)控制湿度 水果贮藏的最佳相对湿度是85%90%。(3 3)气调贮藏)气调贮藏 适当增加C02浓度,降低氧浓度,排除乙烯,充以氮气。通常果蔬适宜贮藏于23氧气和3一5C02的条件下,保持一定的氧气可以减少发酵代谢的发生,高浓度的CO2会抑制乙烯对果实成熟的促进效应。除去乙烯可使用乙烯吸附剂与乙烯脱除机,乙烯吸附剂一般由沸石、铝、过氧化钙、高锰酸钾等番茄装箱以塑料布密封,抽去空气,充以氮气,把氧浓度降至36,可贮藏13个月以上。“隔夜愁变成百日鲜”。第三十四页,讲稿共四十三页哦气调贮藏成为工业发达国家果品保鲜的重要手段。美国和以色列的柑橘总贮藏量的50以上

33、是气调贮藏;法国、意大利以及荷兰等气调苹果均达贮藏总量的50-70。我国气调贮藏库保鲜也发展很快。1978年在北京建成我国第一座气调库,广州、大连、烟台等地也有了气调库,用来保鲜苹果、猕猴桃、洋梨和枣等。气调贮藏库气调贮藏库气调贮藏库气调贮藏库第三十五页,讲稿共四十三页哦KDR果蔬催熟机KDR碳分子制氮机KDR中空二氧化碳脱除机二氧化碳脱除机人工降氧法,即利用降氧机、二氧化碳脱除机来调气。第三十六页,讲稿共四十三页哦LDS-3A在线水分监测仪LDS-IA电脑水分测定仪LDS-ID型电脑水分测定仪LJS-I快速电脑水分测定仪第三十七页,讲稿共四十三页哦SSY-18型电脑粮食水分测定仪SWS5A型

34、粮食水分测定仪JCWR50型粮食温度测定仪及测温杆第三十八页,讲稿共四十三页哦 四、呼吸作用和作物栽培四、呼吸作用和作物栽培 呼吸作用在作物的生长发育、物质吸收、运输和转变方面起着十分重要的作用,因此许多栽培措施是为了直接或间接地保证作物呼吸作用的正常进行。例如早稻浸种催芽时,用温水(30)淋种,利用种子的呼吸热来提高温度,加快萌发。露白以后,种子进行有氧呼吸,要及时翻堆降温,防止烧苗。在秧苗期湿润管理,寒潮来临时灌水护秧,寒潮过后,适时排水,以达到培育壮秧防止烂秧的目的。第三十九页,讲稿共四十三页哦在大田栽培中,适时中耕松土,防止土壤板结,有助于改善根际周围的氧气供应,保证根系的正常呼吸。在

35、中国南方小麦灌浆期,雨水较多,容易造成高温高湿逼熟,植株提早死亡,籽粒不饱满,此时要特别注意开沟排渍,降低地下水位,增加土壤含氧量,以维持根系的正常呼吸和吸收活动。“三麦丰收一条沟三麦丰收一条沟”在水稻栽培管理中,注意勤灌浅灌、适时烤田等措施,使稻根有氧呼吸旺盛,促进营养和水分的吸收,促进新根的发生,由于光合作用的最适温度比呼吸的最适温度低,因此种植不能过密,封行不能过早,在高温和光线不足情况下,呼吸消耗过大,净同化率降低,影响产量的提高。早稻灌浆成熟期正处在高温季节,可以灌“跑马水”降温。温室和塑料大棚中应及时揭膜,通风透光。第四十页,讲稿共四十三页哦小 结呼吸作用是一切生活细胞的基本特征。

36、呼吸作用是将植物体内的物质不断分解的过程,是新陈代谢的异化作用方面。呼吸作用为植物体的生命活动提供了所需的能量,其中间产物又能转变为其他重要的有机物(蛋白质、核酸、脂肪等),所以呼吸作用就成为植物体内代谢的中心。按照需氧状况将呼吸作用分为有氧呼吸和无氧呼吸两大类型。在正常情况下,有氧呼吸是高等植物进行呼吸的主要形式,在缺氧条件下,植物进行无氧呼吸。从进化的观点看,有氧呼吸是由无氧呼吸进化而来的。高等植物的呼吸主要是有氧呼吸,但仍保留无氧呼吸的能力。第四十一页,讲稿共四十三页哦高等植物的呼吸生化途径、电子传递途径和末端氧化系统具有多样性,它们相互依赖,功能各异。不同的植物,同一植物不同器官或组织,在不同生育时期或不同环境条件下糖的氧化降解可走不同的途径,呼吸代谢的多样性是植物在长期进化中形成的对多变环境适应的一种表现。EMP-TCAC-细胞色素系统是植物体内有机物质氧化分解的主要途径,而PPP、GAC途径和抗氰呼吸在植物呼吸代谢中也占有重要地位。呼吸底物的彻底氧化包括CO2的释放与H2O的产生,以及将底物中的能量转换成ATP。EMP-TCAC途径只有CO2的释放,没有H2O的形成,绝大部分能量还贮存在 NADH 和FADH2中。第四十二页,讲稿共四十三页哦感感谢谢大大家家观观看看第四十三页,讲稿共四十三页哦

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁